

HORIZON-CL5-2022-D4-02

EUROPEAN COMMISSION

 European Climate, Infrastructure and Environment Executive Agency

Grant agreement no. 101123238

Smart Grid-Efficient Interactive Buildings

Deliverable DX.X

Deliverable D4.7

Integrated EVELIXIA B2G and G2B Services
Layer and Orchestration

Project acronym EVELIXIA

Full title Smart Grid-Efficient Interactive Buildings

Grant agreement
number

101123238

Topic identifier HORIZON-CL5-2022-D4-02-04

Call HORIZON-CL5-2022-D4-02

Funding scheme HORIZON Innovation Actions

Project duration 48 months (1 October 2023 – 30 September 2027)

Coordinator
ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS

ANAPTYXIS (CERTH)

Consortium
partners

CERTH, RINA-C, CEA, CIRCE, UBE, HAEE, IESRD, UNIGE,

SOLVUS, R2M, EI-JKU, FHB, EEE, EG, ÖE, PINK, TUCN, DEER,

TN, ENTECH, SDEF, EGC, KB, AF, Sustain, NEOGRID,

MPODOSAKEIO, DHCP, HEDNO, BER, MEISA, ITG, NTTDATA,

TUAS, NEOY, HES-SO

Website https://www.evelixia-project.eu/

Cordis https://cordis.europa.eu/project/id/101123238

Disclaimer
Funded by the European Union. The content of this deliverable reflects the authors’
views. Views and opinions expressed are, however, those of the author(s) only and
do not necessarily reflect those of the European Union or the European Climate,
Infrastructure and Environment Executive Agency (CINEA). Neither the European
Union nor the granting authority can be held responsible for them.

Copyright Message
This report, if not confidential, is licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). A copy is available here:
https://creativecommons.org/licenses/by/4.0/.
You are free to share (copy and redistribute the material in any medium or format)
and adapt (remix, transform, and build upon the material for any purpose, even
commercially) under the following terms: (i) attribution (you must give appropriate
credit, provide a link to the license, and indicate if changes were made; you may do
so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use); (ii) no additional restrictions (you may not apply legal
terms or technological measures that legally restrict others from doing anything
the license permits).

ACKNOWLEDGMENT
This project has received funding from the European
Union’s Horizon Europe Framework Programme for
Research and Innovation under grant agreement no

101123238. Disclaimer: The European Commission is not
responsible for any use made of the information contained herein. The
content does not necessarily reflect the opinion of the European
Commission.

Deliverable D4.7

Integrated EVELIXIA B2G and G2B Services
Layer and Orchestration

Deliverable

number
D4.7

Deliverable name
Integrated EVELIXIA B2G and G2B Services Layer and

Orchestration

Lead beneficiary UBE

Description

This deliverable is directly linked to the activities foreseen in

Task 4.6, consolidating all foreseen technical

developments on EVELIXIA’s Services Layer Integration and

Orchestration. The finalized version of this report will be

submitted on M33 with D4.8.

WP 4

Related task(s) T4.6

Type Document, Report

Dissemination
level

Public

Delivery date 24.04.2025.

Main author Eleni Kotali (UBE)

Contributors Stavros Koltsios (CERTH)

Document history

Version Date Changes Author
V1- fisrt draft 28.02.2025 UBE

V1 – Review 01.03.2025 CERTH

V1- consolidated

version

11.03.2025 UBE

V2 – review 14.02.2025 SOLVUS

V2-consolidated

version

25.03.2025 UBE

Final Version 16.04.2025 UBE

Final deliverable

submission

24.04.2025 CERTH

EXECUTIVE SUMMARY

This deliverable presents the design, development, and implementation of the

EVELIXIA Service Layer, the core software infrastructure enabling the coordination

of Building-to-Grid (B2G) and Grid-to-Building (G2B) services within the EVELIXIA

ecosystem. The Service Layer forms the central integration and execution

backbone of the platform, interconnecting heterogeneous actors, domain-specific

Innovative Solutions (IS), and various data sources to deliver intelligent, data-driven

energy services for buildings and grids across multiple pilot sites.

The aim of the Service Layer is to enable automated, scheduled, or on-demand

workflows that orchestrate complex energy simulations, forecasting tools,

optimization algorithms, and user-facing analytics, all within a microservices-

based, modular, and scalable architecture. This infrastructure has been developed

with interoperability, replicability, and extensibility in mind, serving both as a

technical framework and an execution environment for the full suite of EVELIXIA

services.

The implementation follows an event-driven architecture based on Apache Kafka

as the messaging backbone, dockerized IS modules as stateless processing units,

and a custom-built Orchestration Layer that governs workflow logic and execution.

A MongoDB database is used for structured storage of metadata, results, and

workflow states, while an API Gateway manages secure communication between

external clients and internal services.

This MVP version of the Service Layer integrates and validates a set of

representative services, including both B2G and G2B examples, covering

forecasting, optimization, investment planning, and control signal generation.

These include:

 S1 – Building Optimization Services: A daily chain of forecasting, control

action generation, and building-level energy recommendations using

modules IS1, IS3, IS4, IS5, IS9, and IS10.

 S2 – Building Investment Planning: On-demand tools for upgrade

recommendations (IS7), KPI analysis (IS6), and scenario evaluation using

both static and real-time building data.

 S3 – Equipment Maintenance: Monitoring of energy equipment health

using IoT data and predictive diagnostics (IS2).

 S4 – Grid Services: Including Grid Congestion Management (S4.1), Portfolio

Management (S4.2), and Peer-to-Peer Trading (S4.3), all leveraging

simulation, optimization, and economic assessment tools (IS15, IS12, IS13).

 S5 – Grid Investment Planning: A G2B scenario assessing grid upgrade

options and their financial/technical outcomes using IS11 and IS15.

 S6 – Grid Maintenance: Predictive scheduling of grid infrastructure

maintenance tasks based on simulated grid performance and aging models

(IS14).

Each service is defined through a standardized execution workflow, which includes

user input ingestion, data retrieval (either from the Middleware or static

repositories), triggering of relevant IS tools, publishing of intermediate and final

results via Kafka topics, and aggregation for presentation on the Stakeholder

Platform.

Notably, this deliverable also introduces:

 A service-oriented topic naming convention to manage multiple pilots and

isolate data contextually.

 A structured JSON message format for consistent communication and

traceability across all modules.

 A configurable YAML-based orchestration logic, enabling dynamic workflow

configuration per service and pilot.

 Scalable architectural patterns that are already being prepared for transition

into production deployments.

This deliverable serves as the first milestone toward the realization of the EVELIXIA

Service Layer as a modular and interoperable digital backbone for coordinated B2G

and G2B service execution. Building upon the results of this MVP implementation,

future development efforts (towards M33) should prioritize the seamless

integration with the project’s Middleware layer and Stakeholder Platform, ensuring

a unified data flow and user interaction experience across all services. In parallel,

emphasis should be placed on consolidating heterogeneous data inputs, aligning

multiple interconnected innovative solutions, and maintaining reliable

orchestration within varied operational environments to deliver scalable, field-

ready deployments.

Table of Contents
1 Introduction and Objectives ... 13

1.1 Scope and Objectives ... 13

1.2 Structure of this Deliverable ... 14

1.3 Interactions with other Tasks and Deliverables ... 15

2 Service Layer Architectural Overview ... 16

2.1 Service Layer Role within the EVELIXIA Architecture .. 16

2.2 Design Principles of the Service Layer ... 21
2.2.1 Modularity and Containerized Deployment .. 21
2.2.2 Orchestration-Centric Coordination .. 22
2.2.3 Hybrid Communication Model .. 22
2.2.4 Integrating User Interactions with Background Processes ... 23
2.2.5 Security-by-Design Approach .. 23
2.2.6 Flexible and Scalable Architecture .. 24

2.3 Service Layer Architecture .. 26

3 Service Layer Components ... 28

3.1 Message Brokerage System .. 28
3.1.1 Topic Naming Convention ... 30
3.1.2 Message Format and Metadata .. 31
3.1.3 Retention, Partitioning and Reliability .. 34

3.2 API Gateway .. 35
3.2.1 Supported Endpoints ... 37

3.3 Orchestration Layer .. 39
3.3.1 Dynamic Configuration of Workflows ... 42

3.4 Service Layer Database ... 44
3.4.1 Result Storage Model .. 44
3.4.2 Database Querying .. 45

3.5 Additional Service Layer Components ... 46
3.5.1 Innovative Solutions .. 46
3.5.2 Security Layer .. 47

4 Architectural Workflow Patterns ... 49

4.1 Scheduled Continuous Workflows... 49

4.2 On-Demand (User-Triggered) Workflows .. 50

4.3 EVELIXIA Services ... 52
4.3.1 B2G Services .. 52
4.3.2 G2B Services .. 54

5 MVP Implementation .. 56

5.1 Implementation Overview .. 56

5.2 S1.0 - Day-Ahead Building Optimization - Forecasting .. 57

5.3 S1.1 - Day-Ahead Building Optimization – Equipment Control 64

5.4 S1.2 - Day-Ahead Building Optimization - User Recommendations 69

5.5 S2.1 – Building Investment Planning - SRI Advisor ... 73

5.6 S2.2 – Building Investment Planning - VERIFY .. 78

5.7 S3 - Building Equipment Maintenance ... 83

5.8 S4.1 - Grid Congestion Management ... 86

5.9 S4.2 - Portfolio Management .. 95

5.10 S4.3 - P2P Flexibility Trading ... 98

5.11 S5 - Grid Investment Planning ... 99

5.12 S6 - Grid Maintenance ... 103

6 Next Steps .. 109

7 Conclusion .. 111

LIST OF FIGURES
Figure 1 - EVELIXIA High Level Architecture ...16
Figure 2 - EVELIXIA Autonomous Building Digital Twin ... 18
Figure 3 - EVELIXIA Autonomous District Digital Twin Overview19
Figure 4 - On-Demand Service Logic ... 20
Figure 5 - Continuous Service Logic ... 20
Figure 6 - EVELIXIA Service Layer Architecture and Interactions with Frontend
Layer (Stakeholder Platform) and Middleware ... 26
Figure 7 - Service Layer Detail .. 27
Figure 8 - Kafka Broker Basic Architecture ... 29
Figure 9 - Broker topics, producers and consumers ... 31
Figure 10 - Example Kafka payload of IS4 participating in service 1 32
Figure 11 - Example payload for a Service Trigger Topic .. 33
Figure 12 - API Gateway Role .. 36
Figure 13 - Orchestration Layer Functions. ... 40
Figure 14 - Example YAML file depicting the involved ISs of S1.1, along with
their appropriate input/output topics ... 43
Figure 15 - Example workflow document saved in the Service Database45
Figure 16 - Components involved in a Scheduled Workflow 50
Figure 17 - Components involved in an On-Demand Workflow 51
Figure 18 - B2G Services Overview ..54
Figure 19 - G2B Services Overview .. 55
Figure 20: Day-Ahead Building Optimization - Forecasting – Workflow 60
Figure 21 - Sample IoT payload to be used by S1 ..61
Figure 22 - Sample payload for IS5 for S1.0 ...61
Figure 23 - Sample payload for IS1 output ... 62
Figure 24 - Sample payload for IS3 ... 63
Figure 25 - Sample payload for IS4 ... 63
Figure 26 - Service Database entry for successful S1.0 workflow execution ... 64
Figure 27 - S1.1 - Day-Ahead Building Optimization – Equipment Control
Workflow .. 67
Figure 28 - Example payload of IS10 ... 68
Figure 29 - Example payload for the control signal provided to the
middleware (to be implemented in T5.1) .. 69
Figure 30 - Day-Ahead Building Optimization – User Recommendations
Workflow .. 72
Figure 31 - Sample payload for the outputs of IS9 .. 73
Figure 32 - Building Investment Planning - SRI Advisor Workflow 75
Figure 33 - Sample S2.1 trigger payload .. 76
Figure 34 - Sample payload for the results of IS7 ... 77
Figure 35 - Sample payload for the database entry for S2.1 77
Figure 36 - Building Investment Planning - VERIFY Workflow 80
Figure 37 - Sample payload for the trigger message of S2.2 81
Figure 38 - Sample payload for IS6 outputs .. 82
Figure 39 - Building Equipment Maintenance workflow .. 84
Figure 40 - Sample payload for the output of IS2 ... 85
Figure 41 Grid Congestion Management Workflow (on-demand version) 88
Figure 42 - User Trigger for the initialization of the Grid Congestion
Management Service .. 89

Figure 43 - Generated Orchestrator Payload for the Grid Congestion
Management Service .. 90
Figure 44 - Initial Baseline results payload from IS15 ...91
Figure 45 - Initial IS12 Payload ... 92
Figure 46 - Optimized IS15 Payload after IS12 optimization 93
Figure 47 - Service Database Grid Congestion Management payload 94
Figure 48 - Portfolio Management Workflow .. 97
Figure 49 - Sample payload for the results of IS13 ... 98
Figure 50 - Grid Investment Planning Workflow .. 101
Figure 51 - Sample trigger payload for S5 .. 102
Figure 52 - Sample payload of the IS15 results for S5 .. 102
Figure 53 - Sample payload for the IS11 results .. 103
Figure 54 - Grid Maintenance Workflow (scheduled version) 106
Figure 55 - Sample payload for the outputs of IS15 for S6 107
Figure 56 - Sample payload for the results of IS14 .. 108

LIST OF TABLES
Table 1 - Service Layer Architectural Design Principles .. 25
Table 2 Key fields of a Kafka Payload Message .. 32
Table 3 - Key fields of a Service Trigger Payload Message 33
Table 4 Kafka Broker Settings & Policies for low latency and reliability 34
Table 5 API Gateway Core Functions ... 36
Table 6 Designed Endpoints for the API Gateway .. 38
Table 7 Core functions of the Orchestration Layer .. 39
Table 8 Types of Workflow Triggers that the Orchestrator Supports 41
Table 9 Environment Variables to inject in each IS Container 42
Table 10 Service Layer Innovative Solutions .. 48
Table 11 - B2G Services and sub-services and involved components 53
Table 12 – G2B Services and involved components ... 55
Table 13 Technology Stack Overview ... 56
Table 14 - S1.0 Day-Ahead Building Forecasting ... 58
Table 15 – S1.1 - Day-Ahead Building Optimization – Equipment Control 65
Table 16 - Day-Ahead Building Optimization – User Recommendations 70
Table 17 - S2.1 Building Investment Planning - SRI Advisor 74
Table 18: Building Investment Planning - VERIFY ... 79
Table 19 - Building Equipment Maintenance .. 83
Table 20 - S4.1 Grid Congestion Management .. 87
Table 21: Portfolio Management .. 95
Table 22 - Grid Investment Planning .. 99
Table 23: Grid Infrastructure Maintenance .. 104

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 13

1 INTRODUCTION AND OBJECTIVES

1.1 Scope and Objectives

To detransition from isolated Energy Systems and to effectively provide Buildings

as Active Utility Nodes (BAUN), EVELIXIA needs to develop sophisticated ways of

interconnecting the vast number of components and services across all three

Layers (Field, Middleware, Service) of its Platform, all while ensuring interoperability

and reducing the computational burden.

D4.7, which is directly related to T4.6 (Integrated B2G and G2B Services Layer),

focuses on the technical methodologies and architectural framework employed for

the integration and orchestration of the Service Layer and aims to provide the

blueprint for the dynamic coordination of its diverse Innovative Solutions (IS).

The core objectives addressed within this deliverable can be summarized below:

● Integration of Heterogeneous Services: Establish a standardized, scalable,

and resilient integration framework capable of seamlessly connecting

diverse analytical and predictive tools, each developed and provided

independently by various stakeholders within Docker containers.

● Dynamic Orchestration of Workflows: Design and implement a flexible

orchestration mechanism that dynamically manages both scheduled

(continuous) and user-initiated (on-demand) workflows, effectively

coordinating interactions among IS tools to deliver energy services such as

forecasts, optimizations, analytics, and real-time decision support.

● Event-Driven Communication: Adopt an event-driven architecture using

Apache Kafka as the central message broker, enabling loose coupling

between services, improving system resilience, and facilitating future

expansions and scalability without disruption to existing services.

● Persistent and Accessible Data Management: Provide a robust and flexible

storage solution, facilitating long-term persistence of analytical outcomes

and enabling easy data retrieval to stakeholders through well-defined API

endpoints.

● User-Friendly Service Access: Offer user and external stakeholder access to

the integrated service ecosystem, employing an API Gateway pattern to

mediate interactions, manage authentication, authorization, and effectively

shield the internal service infrastructure.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 14

To make the document concise and avoid overlaps with other tasks and

deliverables, D4.7 explicitly excludes:

● In-depth technical implementation or source code-level detail of individual

ISs.

● User-interface designs or front-end application development considerations

beyond interactions with the API Gateway.

● Detailed operational or financial evaluations of the energy services

themselves, except as directly relevant to integration and orchestration

challenges.

● Detailed security aspects and mechanisms, like authentication, privacy and

user/identity management.

1.2 Structure of this Deliverable

This deliverable has been structured to comprehensively address the key

architectural and implementation aspects related to the integration and

orchestration of EVELIXIA’s Service Software Layer, starting with the theoretical

principles, to the details of the core components that were developed, until the

specifics of the first version of the implementation. These are organized in the

following sections:

● Section 1 (Introduction and Objectives): Contextual overview, clearly

defining the scope, purpose, and main objectives of this document. It also

clarifies how this deliverable interacts and aligns with related tasks and

previously submitted or upcoming project deliverables.

● Section 2 (Service Layer Architectural Overview): High-level view of the

chosen integration and orchestration architecture, outlining essential

architectural principles and the overall approach.

● Section 3 (Service Layer Components): Descriptions of each component

within the architecture. Components such as the API Gateway,

Orchestration Layer, Message Brokerage System, Service Layer Database,

Security Layer, and specific Innovative Solutions are discussed, including

their functions, internal operations, and interdependencies.

● Section 4 (Architectural Workflow Patterns): Details regarding the

operational workflows enabled by the architecture, distinguishing clearly

between Scheduled Continuous Workflows and On-Demand (User-

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 15

Triggered) Workflows. Additionally, this section introduces the key Building-

to-Grid (B2G) and Grid-to-Building (G2B) services provided by EVELIXIA,

establishing their relevance and roles within the Service Layer.

● Section 5 (MVP Implementation): Addresses the practical deployment of

the Minimum Viable Product (MVP). It outlines chosen technology stacks,

details on the Docker Compose setup and configuration, detailing the

execution on both on-demand and scheduled workflows.

● Section 6 (Next Steps): Future directions to achieve functional integration,

scaling and interoperability, preparing for the v2 of this deliverable.

● Section 7 (Conclusion): Summary of the achieved objectives, key

architectural benefits, and the overall suitability of the described integration

and orchestration approach.

1.3 Interactions with other Tasks and Deliverables

D4.7 sits at the center of the other tasks and deliverables of WP4, providing the

orchestration blueprint for the Service Layer. The deliverable is also closely related

to the equivalent WP3 deliverable, D3.7 (EVELIXIA platform external

communication and common information management), which similarly details

the integration components of the second EVELIXIA Layer, the Middleware.

Additionally, D4.7 adheres to the architectural principles detailed in D1.7 (Platform

Architecture and integration roadmap). Last but not least, D4.7 will also help guide

the holistic integration efforts of the whole EVELIXIA Ecosystem that will be

developed in T5.1 and its corresponding deliverable D5.1 (Integrated Holistic

EVELIXIA Platform).

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 16

2 SERVICE LAYER ARCHITECTURAL OVERVIEW

This chapter focuses on providing the key architectural requirements of the Service

Layer to be inline with the original EVELIXIA principles detailed in the DoA and in

D1.7 (Platform Architecture and integration roadmap). The role of the Service Layer

within EVELIXIA will be detailed first, followed by the design principles we

implemented and finally closing with the architectural overview of the Layer and

its main components.

2.1 Service Layer Role within the EVELIXIA Architecture

The Service (or Application) Layer is positioned between Middleware Layer and the

User Interface (UI) of the EVELIXIA Ecosystem, and its primary role is to enable all

the data driven services of the Platform, ensure sophisticated coordination and

data exchange between the ISs and deliver analytical results and business value to

the end users through EVELIXIA’s Stakeholder Platform (Frontend). At a high-level

view, the multi-tiered architecture is structured as followed:

Figure 1 - EVELIXIA High Level Architecture

● Field Layer: Contains the equipment as well as the digital assets deployed

across the different demonstration sites (referred to as Pilot Sites). This layer

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 17

generates raw and contextual data collected through various off-the-shelf

smart controllers, IoT sensors, devices, and site-specific IT systems.

● Middleware Layer: Serves as the platform's Data Management and

Interoperability layer. This Layer is responsible for filtering, aggregating,

contextualizing, and securing data received from the Field Layer. It handles

external integration with the Field Layer via the Southbound API as well as

expose relevant data to the Service Layer through the Northbound API. In

addition to data management, this layer also incorporates the platform’s

blockchain infrastructure.

● Service Layer: The focus of this deliverable, the Service Layer acts as the

platform’s main data processing and analytical layer. It integrates a

heterogenous IS toolset, providing tailored made analytics, simulation, and

forecasting capabilities, based on the semantically harmonized data

provided by the Middleware. The Service Layer enables all of its software

solutions to work together coherently through service workflows, where

data, whether originating from the Middleware or generated by other ISs, is

consumed, processed, and re-published as intermediate or final results.

The most important role of the Service Layer is to coordinate and provide the data-

driven Services foreseen by EVELIXIA, which fall primarily into two categories:

● Building-to-Grid (B2G) Services

● Grid-to-Building (G2B) Services

B2G services aim to enable buildings to actively contribute to grid operations as

Active Utility Nodes (BAUNs), rather than merely reacting to grid signals. Buildings

and aggregators can then act as flexibility providers, offering services to the grid

such as demand shifting, building operation optimization, and participation in

market mechanisms.

The Service Layer supports B2G services through the Building Awareness and

Forecasting Toolbox (BAFT) and the Autonomous Building Decision Support

Toolbox (ABDST), developed as part of EVELIXIA’s Service Layer in T4.1 and T4.2

respectively. These toolboxes integrate:

● Advanced building-level forecasting, demand planning, and flexibility

assessment capabilities.

● Real-time operational control, supporting both on-demand and automated

actions by building systems.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 18

● Decision-support mechanisms for investment planning and long-term

energy optimization.

Figure 2 - EVELIXIA Autonomous Building Digital Twin

Furthermore, B2G services within the Service Layer enable:

● Demand flexibility provision to the grid, both implicit (price-based) and

explicit (market-based or operator-triggered).

● Distributed optimization of building operations considering grid

requirements.

● The aggregation of building contributions to provide coordinated services to

Distribution System Operators (DSOs), aggregators, or other grid

stakeholders.

In parallel, the Service Layer also supports a variety of Grid-to-Building (G2B)

services, where information, forecasts, or control signals are provided from grid-

level stakeholders to buildings. These services aim to optimize the operations of

multiple buildings while considering network conditions, enhancing both energy

efficiency and grid stability.

In the EVELIXIA context, G2B services are primarily supported through the

development of the Autonomous District Digital Twin (ADDT), which integrates two

key frameworks:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 19

● The Network Awareness and Forecasting Framework (NAFF), which

provides simulations, forecasts, and network profiling at the district level,

developed at T4.3.

● The Autonomous District Decision Support Framework (ANDSF), which

leverages NAFF outputs to generate decision-support services aimed at grid

operators, aggregators, and other stakeholders, developed at T4.4.

Figure 3 - EVELIXIA Autonomous District Digital Twin Overview

Through these frameworks, the Service Layer enables:

● Simulation-based grid operation planning, supporting services such as Grid

Investment Planning, Multi-Vector Network Management, and Aggregated

Demand Portfolio Management.

● The provision of dynamic signals, such as flexibility requests, forecasts, or

constraints to buildings or aggregators.

● The optimization of grid-aware building operations, enabling buildings to

respond optimally to grid needs.

On the other hand, in the context of information flow and for the purposes of the

present deliverable, a Service represents more than a single computational output

or analytic result. Here, we define it as a coordinated workflow composed of

multiple ISs that belong in either BAFT, ABDST, NAFF or ANDSF of the B2G/G2B

Layers, that are working in sequence to process data and deliver results to the

EVELIXIA’s UI, the Stakeholder Platform. Each Service:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 20

● Is designed to address a specific business need, such as demand flexibility

provision, portfolio optimization, or network investment planning, among

others.

● Combines the functionalities of several ISs, each contributing specialized

recommendations, analytics, or decisions.

● Operates within the framework of either a B2G or G2B interaction,

depending on which types of actors are benefitting or the information flow.

These Services then can be classified in two broad categories, regardless of context,

based on their operational patterns:

● On-Demand Services: Triggered manually by end-users (e.g., energy

managers, aggregators) through the Stakeholder Platform, typically for

scenario evaluation, investment planning, or ad-hoc simulations.

Figure 4 - On-Demand Service Logic

● Continuous Services: Operate autonomously, running at pre-defined

intervals (e.g., daily) to provide forecasts, recommendations, or operational

alerts without user intervention.

Figure 5 - Continuous Service Logic

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 21

The purpose of T4.6 is to enable these Services by:

● Dynamically initializing the required ISs for each requested service.

● Orchestrating the sequence in which the ISs consume, process, and

exchange data.

● Delivering aggregated results to end-users via the Stakeholder Platform or

to other systems in the EVELIXIA Ecosystem.

In the following sections of this document, we will explain the key design and

integration principles we have implemented to ensure coherent, reliable and

repeatable Service results.

2.2 Design Principles of the Service Layer

To facilitate the integration of the project’s diverse toolset and needs, we have

devised specific design principles that were directly shaped by the complexities

and challenges posed by EVELIXIA’s specificities and objectives.

As the DoA details, the EVELIXIA ecosystem is expected to serve multiple Pilot Sites

and integrate a wide range of diverse ISs, each having different computational

needs and developed with different technology frameworks. Additionally, as all

distributed systems, EVELIXIA has to be prepared for many of its components

operating in different hosting environments and premises across multiple

countries.

Building on the main guidelines detailed in D1.7, and simultaneously addressing

the above challenges, the following fundamental design decisions for the Service

Layer were taken.

2.2.1 Modularity and Containerized Deployment

The Service Layer involves 19 different ISs, each developed by different

organizations, using different technology stacks and principles. Apart from the ISs,

a number of backend/integration components must be developed to support the

smooth operation of the whole layer. All these components must:

● Harmoniously interact as steps within complex workflows to produce the

end-results of the Energy Services detailed in D1.7.

● Operate across different Pilot Sites using different data

● Be adaptable to the evolving requirements of the project

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 22

To address this challenge, each component within the Service Layer, whether it's

an IS or a software solution responsible for orchestrating IS interactions, handling

user requests, or delivering outputs, has been designed to operate as an

independent and reusable module. This means that different parts of the system

can evolve separately without causing disruptions and the IS developers can work

independently.

This modularity also ensures that the platform can adapt to each Pilot’s specific

configuration, as different regions might deploy slightly different services

depending on their needs.

2.2.2 Orchestration-Centric Coordination

As mentioned before, EVELIXIA wants to support a vast number of Services,

utilizing data from dissimilar sources, all while having different activation

timeframes and for different time windows throughout the day. These Services

involve complex computational workflows utilizing multiple ISs and components,

that need to exchange data either periodically in an automated manner

(Continuous Services) or when the end-user requires on-demand action (On-

Demand Services). These requirements pose the need for introducing a dedicated

orchestration mechanism for the Service Layer, instead of relying on direct

connections between each IS.

This Orchestration Layer within the EVELIXIA Service Layer should manage the

sequence of IS interactions within each Service to produce their end-results by:

● Automatically initializing each workflow by connecting the ISs when the

end-users subscribe to a Service through the Stakeholder Platform.

● Managing the data flows between the different involved ISs.

● Ensuring the correct sequencing and execution of both automated and

user-triggered workflows and processes.

2.2.3 Hybrid Communication Model

Since the ISs will be deployed across distributed and heterogenous IT

environments, with varying levels of direct access to EVELIXIA’s core Service Layer

components, there is a need to adopt a hybrid communication model to support

the different types of data exchanges. This challenge is caused because native

event-driven communication schemes that were originally envisioned in the DoA

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 23

cannot be technically supported by all ISs or not permitted due to network

restraints (e.g, firewall policies, isolated networks etc).

To mitigate this challenge, the Service Layer will integrate two complementary

communication mechanisms to ensure this hybrid model of data exchange:

● An event-driven Message Brokerage System that will allow, wherever

possible, for the ISs to communicate natively and asynchronously via

standard publish/subscribe mechanisms.

● A RESTful API Gateway that will act as a bridge for ISs and components of

the EVELIXIA Ecosystem (e.g the Middleware Northbound API) that cannot

directly communicate with the Brokerage System, thus enabling them to

participate in the workflows through standardized API Requests.

2.2.4 Integrating User Interactions with Background Processes

Apart from the ISs and external components that cannot directly consume or

publish to the Brokerage System, the API Gateway addresses another requirement

of the EVELIXIA Platform, the user-initiated actions.

These actions, while external, require immediate feedback from the Service Layer

and can be considered as synchronous processes. In order to be able to support

both the asychronous and synchronous processes, the Service Layer was designed

to support all external interactions (e.g the user actions from the Stakeholder

Platform or the Middleware) through the API Gateway. This provides:

● A unified entry point.

● A seamless bridge between synchronous and asynchronous workflows.

● Simplified external integration.

2.2.5 Security-by-Design Approach

Although not directly tackled by T4.6, as a general design principle, the Service

Layer should take into consideration the need for strict control over which end-

users or actors can access what data and in which context, ensuring isolation

between different Pilots and Services.

The vertical security principles that EVELIXIA, and consequently, the Service Layer

should follow, are detailed in D1.7, D3.5 and will be expanded in D5.1, which is due

on M24 of the project, but as a general approach, the system should enforce:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 24

● Authentication via a dedicated security mechanism (e.g., Keycloak and

Blockchain).

● Access control at the API Gateway level.

● Preparedness for future requirements such as:

o End-to-end encryption.

o Role-based permissions.

o Per-Pilot isolation, should localized deployments become necessary.

2.2.6 Flexible and Scalable Architecture

To accomodate the future architectural changes that will be detailed in M33 and

the updated version of D1.7 and the rest of the updated deliverables of the WP4,

the Service Layer needs to be designed to be future-proof, meaning it should be

able to:

● Scale to support additional Services or the updated functionalities of the ISs,

by utilizing common data schemas like JSON

● Operate both in centralized and per-Pilot configurations

● Allow Pilot-specific variations in the Services, without compromising the

overall Service Layer

To achieve this flexible and scalable architecture for the Service Layer, all above

design principles must be utilized. Their summary can be found in Table 1 :

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 25

Table 1 - Service Layer Architectural Design Principles

Challenge Design Decision Purpose

Integration of Diverse

ISs and Components

Modular and

Independent

Components

Enable independent

development,

deployment, and

evolution of ISs and

integration components.

Coordination of

Complex Multi-IS

Workflows

Orchestration-Centric

Approach

Manage sequencing,

deployment, and

execution of workflows

both automatically and

on-demand.

Distributed and

Heterogeneous

Deployment

Environments

Hybrid Communication

Model (Message Broker +

API Gateway)

Support both

asynchronous (native

broker) and synchronous

(API) interactions,

overcoming network

limitations.

Support for User-

Triggered Processes

Unified Access through

API Gateway

Provide a single entry

point for synchronous

user interactions and

external system requests.

Security Across Services

and Pilots

Security-by-Design Enforce access control,

authentication, and

isolation following

platform-wide security

principles.

Future Scalability and

Pilot-Specific

Customization

Flexible and Scalable

Architecture

Allow centralized or Pilot-

specific deployments,

scalable service addition,

and Pilot-specific service

variation.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 26

2.3 Service Layer Architecture

The high-level architecture can be visualized as a set of interconnected modules:

an entry-point for external interactions, orchestration and processing logic,

communication infrastructure, data storage, and the plugged-in Innovative

Solutions (specialized tools). Utilizing the basic Design Principles detailed in the

previous section, the following high-level architecture has been designed for the

Service Layer:

Figure 6 - EVELIXIA Service Layer Architecture and Interactions with Frontend Layer
(Stakeholder Platform) and Middleware

The core components of the Service Layer are the following:

 API Gateway: Acts as the unified access point for all external interactions

(e.g., from the Stakeholder Platform and Middleware), and bridges tools or

actors that cannot directly communicate with the internal messaging

system.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 27

 Orchestration Layer: Responsible for managing workflows, configuring

communication links between tools, and monitoring container health.

 Message Brokerage System: Facilitates asynchronous, event-driven

communication between IS tools. It ensures loosely-coupled data exchange

and supports both continuous and on-demand workflows.

 Service Layer Database: Stores historical results from the execution of

services, making outputs easily accessible to both the Frontend and other IS

tools.

 ISs: The core analytical, forecasting, optimization, and simulation modules,

developed independently and integrated into services via well-defined

workflows. For the purpose of this deliverable, we consider the ISs to be

containerized “black boxes”, where no source code or logic is explored.

Figure 7 - Service Layer Detail

In the following chapters we will provide detailed breakdowns of each of the

components of the Service Layer and highlight their role in facilitating the services.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 28

3 SERVICE LAYER COMPONENTS

The Service Layer consists of several core components, each responsible for specific

functionalities. Together, these components implement the principles and

patterns described in the previous chapter. This section provides a functional

overview of each component, explaining its role and how it interacts with others.

3.1 Message Brokerage System

The core component of the EVELIXIA Service Layer architecture, and the foremost

goal of T4.6, is its event-driven communication model, which enables decoupled,

scalable, and asynchronous data exchange between the different ISs. To

implement this, the platform employs a Message Brokerage System based on

Apache Kafka, an industry-standard distributed event streaming platform. This

system serves as the communication message bus of the Service Layer, facilitating

the orchestration of complex services, integration of heterogeneous ISs and

delivery of data and commands across the ecosystem.

At the core of the Message Brokerage System is the publish/subscribe paradigm.

In this model, components (referred to as producers) publish structured messages

to Kafka topics, which act as named communication channels. Other components

(referred to as consumers) subscribe to these topics to receive and process the

messages asynchronously. This design eliminates direct dependencies between

producers and consumers, allowing services to operate independently, scale

flexibly, and evolve over time without strict integration rules.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 29

Figure 8 - Kafka Broker Basic Architecture

This asynchronous approach is particularly well-suited to the requirements of the

EVELIXIA platform, where ISs are developed by different partners, hosted across

distributed environments, and may need to operate independently based on

different triggers or schedules. Kafka ensures that all events, whether they originate

from user-triggered actions (on-demand services), time-based schedules

(continuous workflows), or field data provided via the Middleware Layer and

Northbound API, are available when needed by the different ISs and Service Layer

Components.

The Message Brokerage System also supports buffering, load balancing, and fault

tolerance through features such as message retention and consumer groups.

These features make sure that if a service is temporarily unavailable or slow to

respond, messages are not lost and can be processed once the service resumes.

Furthermore, the architecture is inherently scalable, supporting the future

evolution of the platform to handle higher data volumes, more services, and more

complex workflows across multiple pilot sites.

In the following subsections, the structure, policies, and role of Kafka within the

Service Layer will be described in more detail, along with its integration with other

components such as the Orchestration Layer, API Gateway, and the Service

Database.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 30

3.1.1 Topic Naming Convention

In EVELIXIA’s distributed and modular architecture, communication between

components is handled through an event-driven message broker system. One of

the key design challenges was determining how to structure Kafka topics to

support clean, reusable data flows between the ISs, especially considering that the

same IS output may be consumed by multiple different services.

To address this, the naming convention of Kafka topics in the Service Layer follows

a pilot-scoped, service-agnostic structure: {pilot}.{IS}.output

This naming strategy ensures that:

 Each IS produces results to only one topic per pilot, regardless of how many

services use that data.

 Data ownership and origin are clearly expressed (per IS, per pilot), without

unnecessarily duplicating outputs per service.

 Other ISs and workflows can reuse existing outputs without changing the IS

publishing behavior.

 Service awareness is encapsulated in message metadata, not in topic

naming, allowing more flexible and maintainable workflows.

Services that require specific outputs from one or more IS tools subscribe to the

relevant topics and apply logic to filter or route messages based on metadata such

as workflow_id, service_id, or timestamp. This decouples producers from

consumers and allows multiple services to make use of shared components

without needing multiple duplicate topics or extra logic.

Since the Kafka Broker will also accomodate the transmission of structured and

contextualized Pilot Data coming from the Middleware via the Northbound API to

the different ISs of the Service Layer, we defined a dedicated topic naming

convention for them to be published. The pattern we follow for this first version is:

{pilot}.middleware.iot

These pilot-specific topics will carry the structured JSON telemetry data from the

Northbound API, following WP3’s interoperability specifications. Since the

integration of the Middleware and the Service Layer will take place in T5.1, we have

started with this simplified approach of a single ingestion pilot topic that will be

further developed and designed in later stages of the project.

Regarding service-specific user inputs coming from the Stakeholder Platform, we

have also implemented another type of topics to facilitate their correct

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 31

dissemination to the different ISs. For these types of messages, the naming pattern

is defined as: {pilot}.{service_id}.trigger

As the user inputs will usually act as a trigger for the on-demand EVELIXIA Services,

this design will allow all ISs participating in a specific service to be activated

asynchronously, without requiring direct invocation.

Figure 9 - Broker topics, producers and consumers

3.1.2 Message Format and Metadata

Each Kafka message exchanged within the EVELIXIA Service Layer IS Topics,

follows a structured JSON schema to ensure consistency, interoperability, and

service-agnostic communication between components. The message format

includes both core metadata (for workflow tracing, filtering, and correlation) and

dynamic payloads specific to the IS outputs.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 32

Figure 10 - Example Kafka payload of IS4 participating in service 1

The fields of the payload are described in Table 2:

Table 2 Key fields of a Kafka Payload Message

Field Description

pilot Identifier of the pilot site (e.g., gr1)

workflow_id Unique ID assigned to the service

workflow instance

service_id Service identifier the workflow belongs

to (e.g., S1)

source IS that generated the result (e.g., IS4,

Middleware etc)

timestamp UTC timestamp of result generation

output_data Dynamic JSON content containing

results (e.g., forecasts, KPIs). Flexible

depending on the outputs of each IS

unit Optional unit metadata (e.g., kWh, °C)

auth_token Token verifying the origin of the

message (used for security/auditing).

Auth mechanism will be implemented

fully in T5.1

version Schema version for compatibility and

evolution

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 33

Regarding the Service Trigger topics, although the schema design varies, we keep

the same design principles to ensure interoperability while accommodate a wide

range of different user inputs.

Figure 11 - Example payload for a Service Trigger Topic

The fields of the payload are described in the Table 3:

Table 3 - Key fields of a Service Trigger Payload Message

Field Description

pilot Identifier of the pilot site (e.g., gr1)

workflow_id Unique ID assigned to the service

workflow instance

service_id Service identifier the workflow belongs

to (e.g., S1)

timestamp UTC timestamp of result generation

User_input Object containing the parameter

values provided by the end-user or

frontend (e.g., penalty costs, target

date). Flexible structure depending on

the specific service.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 34

3.1.3 Retention, Partitioning and Reliability

To ensure robustness and traceability of the workflows, the Kafka Broker is

configured with the core parameters presented in Table 4:

Table 4 Kafka Broker Settings & Policies for low latency and reliability

Setting Value Description

Message Retention 24 hours (per

topic)

Ensures that results are

available for a full workflow

cycle. Can be increased in v2.

Max Message Size ~1MB (default) Sufficient for most payloads (e.g,

hourly forecasts, simulations

results without visuals).

Topic Partitions 1–3 (per topic,

scalable)

MVP starts with 1; partitioning

per building/service can be

enabled later for scalability.

Consumer Groups Enabled Allows multiple ISs or database

consumers to read the same

topic independently.

Message Durability

Acknowledgment

level: acks=all

Ensures messages are fully

replicated before

acknowledging success.

After the 24-hour window, the retained data inside the various topics are persisted

in the Service Layer Database for long-term storing. To avoid duplication, this

excludes any data coming from the Middleware and the Northbound API, as those

are already saved in the Middleware Database. These parameters were chosen to

support both low-latency and reliable workflow execution, all while allowing for

future scaling in cases where more demanding services are designed for the

second version of the EVELIXIA Platform.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 35

3.2 API Gateway

Another core component of the EVELIXIA Service Layer architecture is the API

Gateway, which serves as the unified and secure communication interface

between external (to the Service Layer) systems and the internal services of the

platform. Its primary role is to enable real-time, request-response interactions for

end-users, external services, and tools that are unable (due to technical or security

constraints) to interact directly with the Message Brokerage System. The API

Gateway complements the platform’s asynchronous message-based

communications by supporting synchronous workflows, event triggering, data

requests, and field-level interactions.

The EVELIXIA platform operates within a heterogeneous and multi-actor

environment, where not all tools or users can be tightly coupled to internal event

streams. This challenge is particularly relevant in scenarios where:

 End-users (e.g., building managers, aggregators, grid operators) interact

with the system via the Stakeholder Platform.

 Certain IS tools are hosted in restricted environments, where direct Kafka

connectivity is either unsupported or forbidden by network security policies.

 Synchronous calls are needed to trigger workflows, subscribe to services, or

retrieve analysis results in real time.

To accommodate these scenarios, the API Gateway operates as a hybrid integration

layer, bridging the asynchronous world of Kafka with REST-based components and

users. It allows loosely coupled services to interact without compromising real-time

responsiveness, security, or modularity.

At a high level, the API Gateway acts as a unified entry point for all systems that are

considered external to the Service Layer and should perform the system-wide

functions presented in Table 5:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 36

Table 5 API Gateway Core Functions

Function Description

Service

Orchestration

Trigger

Routes validated service subscription or execution

requests to the Orchestration Layer to initiate appropriate

workflows.

Kafka Proxy

Interface

Supports IS tools that do not implement Kafka clients, by

acting as a publishing/subscription proxy

Middleware

Access Endpoint

Facilitates access to contextual or raw data coming from

the Middleware Layer based on pilot and dataset filters.

Security

Enforcement

Verifies and enforces authentication/authorization using

OIDC-compatible tokens (e.g., Keycloak-issued JWTs), and

manages cross-cutting concerns like rate-limiting, CORS,

and traffic logging.

It is worth noting that while the Middleware Access Endpoint and the Security

Mechanics have been conceptualized, they will be implemented at a later stage for

the purposes of T5.1.

Figure 12 - API Gateway Role

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 37

3.2.1 Supported Endpoints

From a communication perspective, the API Gateway complements the event-

driven architecture by offering RESTful interfaces that mirror the same core

capabilities enabled by Kafka. This means:

 ISs unable to use Kafka natively can use the Gateway’s /publish and

/consume endpoints to participate in workflows by sending/receiving

messages through the Gateway (which acts as a Kafka client on their behalf).

 Service initialization requests (e.g., service subscriptions or workflow

executions) are synchronously received and forwarded to the Orchestration

Layer, which in turn handles deployment, topic configuration, and message

publishing.

 Result queries and monitoring (e.g., polling for results or checking status of

workflows) are also handled through REST calls, abstracting the underlying

database and orchestration logic.

 Field data requests are routed through the Gateway to the Middleware

Northbound API, based on pilot and data type, ensuring standardization and

access control across sites.

Table 6 contains an overview of the supported REST API endpoints:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 38

Table 6 Designed Endpoints for the API Gateway

Endpoint Method Description

/api/service/subscribe POST Triggers the Orchestration

Layer to initialize a specific

Service.

/api/service/execute/{service_id) POST Triggers the execution of an on-

demand workflow

/api/service/status/{workflow_id} GET Retrieves current status of a

workflow (e.g., running, failed,

completed).

/api/service/results/{workflow_id} GET Retrieves final output of a

completed service (fetched

from Service Layer DB).

/api/IS/publish/{topic} POST Allows ISs that cannot connect

to Kafka to push outputs into

the broker.

/api/IS/consume/{topic} GET Allows Kafka-incompatible

tools to fetch messages from

broker topics via polling.

/api/data/{pilot}/{dataset} GET Provides access to Middleware

data for a specific pilot and

category.

/api/health GET Lightweight service availability

check (e.g., for orchestrator

status or tool availability).

We have conceptualized the endpoints to be protected by RBAC, by relying on

bearer token authentication.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 39

3.3 Orchestration Layer

The Orchestration Layer is a central component of the EVELIXIA Service Layer

responsible for executing workflows across the various modules, including IS tools,

the Message Brokerage System, and the API Gateway. It acts as the logic and

coordination engine of the platform, interpreting user or system-triggered

requests, initiating the corresponding processing chains, and managing the

sequencing and communication required to produce analytical outputs for each

Service.

Unlike the Message Brokerage System (Kafka), which serves as the transport

backbone, and the API Gateway, which provides entry and exit points for external

communication, the Orchestration Layer is the component that understands what

needs to be done in response to incoming requests and how to coordinate the

involved services and data flows to make that happen.

Table 7 Core functions of the Orchestration Layer

Function Description

Workflow

Initialization

On user subscription to a Service, the orchestrator triggers
the initialization of required IS containers (via Docker
Compose for the MVP), and configures Kafka topics and
environment variables.

Request

Handling

Upon receiving a request (via the API Gateway), the
orchestrator determines the correct execution logic (e.g.,
invoking the right IS tools in order).

Kafka

Coordination

Publishes events to relevant Kafka topics to initiate IS actions.
Generate trigger events on dedicated trigger Kafka Topics to
initialize on-demand workflows. Subscribes to result topics to
gather outputs or handle asynchronous responses.

State & Error

Management

Tracks workflow execution (status, success/failure), manages
retries, and updates result statuses in the Service Layer
Database.

Result

Aggregation

In workflows involving multiple IS tools, aggregates the final
outputs, packages them, and optionally sends them to the
database or back to the frontend.

Scheduling &

Triggering

For continuous workflows (e.g. daily forecasting), the
orchestrator uses internal scheduling logic (via Docker
Compose cron-like setups) to launch jobs without frontend
input.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 40

Figure 13 - Orchestration Layer Functions.

Figure 13 illustrates the consolidated functions of the orchestration Layer.

 Function 1: Compose Workflow Trigger Payload (Red), Collects necessary

user inputs and service configuration to generate a valid workflow trigger

message.

 Function 2: Dissemination of Pilot IoT Data to the Service Layer (Blue),

Handles the reception and publishing of structured pilot data to Kafka topics

for IS consumption.

 Function 3: Workflow Initialization (Green), Initiates the execution of a

defined service by distributing the composed trigger to internal and external

components.

 Function 4: Workflow Result Composition (Purple), Aggregates IS outputs,

formats the final service result, and persists it to the Service Layer database.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 41

For this first version of the Service Layer, we have designed the Orchestration Layer

through a custom Node.js/Express service running in a Docker Compose

environment, complementary with the other Service Layer Components. To

perform the core functionalities depicted in the table above it uses:

 REST API routes to receive external triggers (/api/service/execute,

/api/service/status)

 Kafka client libraries to produce and consume messages related to each

service workflow

 Lightweight job tracking using internal in-memory state and MongoDB as

needed for result persistence

This way, the Orchestration service can manage different types of workflow

executions while enabling the different ISs to remain stateless and agnostic. Table

8 lists the types of triggers that have been identified so far:

Table 8 Types of Workflow Triggers that the Orchestrator Supports

Trigger Type Example Details

User-Initiated An end-user on the

Stakeholder Platform

clicks a button that

triggers an action, e.g.,

“Run Optimization”

Orchestrator service

validates requests and

publishes initial message

to Kafka Broker

Time-Based An initialized continuous

Service executes a new

workflow e.g., Daily

Forecasting starts at

00:00

Internally scheduled via

cron-like timer to initiate

event to an IS

Data-Driven Middleware sends new

Pilot Data

Orchestrator manages

Middleware Topics and

triggers workflows when

conditions match

A useful clarification regarding the role of the Orchestration Layer is that it does not

act as a Middleware inside the Service Layer Architecture, but rather acts as a

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 42

decision-making component of the backend that provides and conducts the

internal logic of the whole Layer. Currently, we created a rule-based logic to

accommodate existing services through configuration and environment files, but

in the next version the aim is to explore more robust orchestration options like

Kubernetes or Apache Airflow.

Additionally, for user-initiated (on-demand) workflows, the orchestrator initiates

execution by publishing a structured message to a Kafka trigger topic specific to

the service and pilot (e.g., gr1.S4.trigger). These trigger topics act as coordination

entry points where ISs involved in each service will listen to them to begin

processing. This design ensures that no direct service-to-service invocation is

required, while allowing the orchestrator to centrally manage the execution logic.

The orchestration logic determines the naming and routing of these trigger

messages dynamically based on each service’s YAML configuration file.

3.3.1 Dynamic Configuration of Workflows

The Orchestration Layer manages the logic of the Service Layer through dynamic

configuration. This means that the rules are not hard-coded in each involved IS’s

source code, but rather some external descriptors are utilized to understand:

 Which ISs are involved in a service

 What is the order they should be invoked

 What Kafka topics should be produced to or consumed from

 What parameters or transformation logic needs to be applied

 Where and how to store final results

This logic is received by each IS container through a set of environment variables

during the deployment phase. Those include:

Table 9 Environment Variables to inject in each IS Container

Variable Description

KAFKA_BROKER_URL Kafka broker instance for the pilot (currently we

have only 1 Broker)

INPUT_TOPICS Kafka topic(s) to consume from

OUTPUT_TOPIC Topic to which results should be published

SERVICE_IDS Which services this tool participates in

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 43

WORKFLOW_TIMEOUT Max time to wait before failing a workflow

Additionally, for each Service, the Orchestration Layer references a specific YAML

file that defines the logic behind each workflow.

Figure 14 - Example YAML file depicting the involved ISs of S1.1, along with their
appropriate input/output topics

For each Service and their YAML files the orchestrator:

 Determines the required Kafka topics to configure and monitor

 Establishes the execution chain for the IS tools

 Monitors expected outputs to determine when the workflow is complete

 Logs metadata (timestamps, tool outputs, errors) and updates workflow

status in the database.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 44

3.4 Service Layer Database

The Service Layer Database is a core backend component responsible for

persistently storing the results of service workflows, workflow statuses, and service

metadata. Unlike raw data ingested from the Field Layer via the Middleware (which

remains stored within the Middleware infrastructure) the Service Layer Database

only stores outputs produced from the execution of workflows across one or more

IS. These include aggregated service results, IS-specific outputs, workflow

metadata, and execution status.

In the first version, we use MongoDB (a document-based NoSQL database) for its

flexibility, schema-less nature, and ability to scale with heterogeneous and dynamic

data structures. This structure fits perfectly with the requirements of a platform

where multiple ISs may contribute various outputs (with different formats and

metadata) to a single workflow result.

 The Service Layer Database was designed to accommodate specific goals:

 Store the final outputs of each workflow in a structured and queryable

format

 Retain results per pilot and per service while accommodating multiple

contributing ISs

 Allow IS-specific result queries in addition to full workflow queries

 Support easy integration with Orchestration Layer logic and frontend

queries

3.4.1 Result Storage Model

Each service execution creates a single document under the Results collection. The

document contains metadata about the workflow and stores a list of individual

results submitted by different ISs. This allows for querying both full workflow

outputs and individual IS contributions.

Each Result Document that is created for each workflow_id contains the necessary

workflow-level metadata (e.g., pilot, timestamp, service_id) as well as the results

array that contains the results of each participating IS. Each result item contains:

 The originating source (IS ID or other source).

 results with IS-specific fields and format.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 45

 Optional fields such as unit, status, and error_msg (if applicable).

This design ensures that all outputs of the service are stored together while

simultaneously keeps IS results separately accessible within the array to support

selective access (if needed).

Figure 15 - Example workflow document saved in the Service Database

3.4.2 Database Querying

The platform must support a variety of queries originating from the frontend, the

orchestration layer, and possibly even other ISs. The design of the storage model

supports the following key scenarios:

1 Retrieve Full Workflow Results (per workflow_id)

This use case supports end-users on the Stakeholder Platform or visualization

dashboards who want to review the outcome of a specific service execution. The

platform will retrieve the full document based on the workflow_id, including all IS

contributions.

2 Retrieve IS-Specific Output (inside a workflow)

When a downstream IS tool or orchestration step only needs the result of one

particular IS (e.g., only IS5’s dispatch plan), the system can isolate and extract the

relevant result item inside the array using internal filtering.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 46

3 List Workflow Executions (per service and pilot)

For navigation or analytics, the frontend may display a history of service executions

for a given pilot and service. This requires filtering documents by pilot and service,

sorted by timestamp.

4 Analytical/Validation Queries (by IS output type or key)

Some advanced tools or reports may request “all forecasts by IS4 in the past week”

or “every time IS10 issued a certain control signal.” These queries leverage field-level

filtering inside the results.output_data.

5 Support Historical Results Fetching

Since Kafka message retention is temporary (e.g., 24h), any re-evaluation or re-

visualization must query the database. The orchestration layer will provide an

abstraction layer to serve these through specific request types (e.g., via

/service/status).

It is worth noting that direct access to the Service Layer Database is restricted to

the Service Layer Components. For this reason the API Gateway routes external

calls to the Orchestrator Service which in turn queries the database using

workflow_id or other parameters according to the use cases. When the vertical

EVELIXIA Security layer is implemented in T5.1, this logic may need to be adjusted

to accommodate the new authentication requirements.

3.5 Additional Service Layer Components

While the focus of D4.7 is the design and integration of the Service Layer through

the core technical components detailed in the previous sections, there are also two

additional types of entities that play an important role within EVELIXIA; the

Innovative Solutions (IS) and the Security Components.

3.5.1 Innovative Solutions

The 19 ISs of the Service Layer are developed independently utilizing efforts from

the other tasks of WP4 (T4.1-T4.5), providing the core business value of EVELIXIA.

Without including technical details, for the purpose of this deliverable we consider

the IS to be:

 Independently developed and hosted, most often on partner premises.

 Integrated into workflows via Kafka topics or API calls orchestrated by the

backend.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 47

 Containerized and deployed dynamically by the orchestrator when a service

is activated. In the context of this deliverable, each IS is treated as a modular

processing node that consumes or produces data, without delving into its

internal algorithmic details. Integration contracts (schemas, topics, and

configuration formats) are agreed during the onboarding of each IS and

serve as the primary interface for the orchestration logic.

 The Human-to-Building Interfaces (IS16-IS19) are considered part of the

frontend of the EVELIXIA Platform and together are being treated as the

Stakeholder Interaction Platform. The key difference between these ISs and

the others is that they do not directly take part in workflows or services, but

instead 1) provide direct user input to the rest of the Service Layer

Components (e.g., triggering workflows, providing user inputs) and 2) utilize

service results to present them to the user in a visual manner.

Table 10 lists the ISs involved in the different EVELIXIA Service Layers.

3.5.2 Security Layer

Security in the EVELIXIA platform is handled through a vertical access

management system, utilizing Keycloak and Blockchain. These components are

developed in T5.1 and T3.5 and provide identity and access management services

to all platform components, as well as, handle privacy and trust throughout the

Stakeholder Platform. The Security Layer:

 Authenticates users and services via OAuth2 and OpenID Connect tokens.

 Enforces role-based access control policies at the API Gateway level.

 Ensures only authorized requests reach the orchestration and IS logic.

Though not developed within this task, the Security Layer is critical for

supporting multi-actor usage, secure Pilot operations, and future

compliance with cybersecurity regulations in energy systems.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 48

Table 10 Service Layer Innovative Solutions

No. Name Type
IS01 Indoor Air Quality measurement B2G - Building Awareness and

Forecasting Framework
IS02 Energy Assets Maintenance B2G - Building Awareness and

Forecasting Framework
IS03 Demand Forecasting B2G - Building Awareness and

Forecasting Framework
IS04 Flex Forecasting B2G - Building Awareness and

Forecasting Framework
IS05 Building Energy Modelling and

Simulation
B2G - Building Awareness and
Forecasting Framework

IS06 Building Investment Planning Assistant B2G - Autonomous Building
Decision Support

IS07 SRI Advisor B2G - Autonomous Building
Decision Support

IS08 DSM Services Advisor B2G - Autonomous Building
Decision Support

IS09 Proactive Demand Planning (PDP) B2G - Autonomous Building
Decision Support

IS10 Continuous Energy Performance
Management (CEPM)

B2G - Autonomous Building
Decision Support

IS11 Grid Investment Planning Assistant
(GIPA)

G2B - Autonomous Network
Decision Support Framework

IS12 Multi-vector Network Manager G2B - Autonomous Network
Decision Support Framework

IS13 Aggregated Demand Portfolio
Manager

G2B - Autonomous Network
Decision Support Framework

IS14 Smart Grid Maintenance G2B - Network Awareness and
Forecasting Framework

IS15 Multi-Vector Grids Energy Modelling &
Simulation

G2B - Network Awareness and
Forecasting Framework

IS16 Digital Building Logbook (DBL) Human-to-Building Interfaces
IS17 Visual Analytics Engine (VAE) Human-to-Building Interfaces
IS18 Energy Services Marketplace Human-to-Building Interfaces
IS19 Building Virtual Model Human-to-Building Interfaces

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 49

4 ARCHITECTURAL WORKFLOW PATTERNS

Having defined the technical architecture of the Service Layer and its core

components, this chapter focuses on how these components work together to

deliver real value through orchestrated service workflows. These workflows follow

two main patterns, 1) scheduled and 2) on-demand, each tailored to support

different categories of services (e.g., optimization, planning, analytics) throughout

the EVELIXIA ecosystem.

This chapter analyses the specifics of the two patterns as well as provides an

overview of the revised EVELIXIA Services that will be supported.

4.1 Scheduled Continuous Workflows

In the EVELIXIA Service Layer, Scheduled Continuous Workflows refer to processes

that execute automatically and repeatedly at predefined intervals (either time-

triggered or event-based) without the need for user interaction.

Scheduled workflows are primarily used in scenarios where services require

recurring execution, such as daily building optimization, continuous monitoring of

asset health, or forecasting energy demand and flexibility. They ensure the platform

remains responsive and autonomous, executing key services on a routine basis

even when no explicit user input is given. These workflows share several common

traits:

 Automated & Periodic: They are initiated either on a schedule (e.g., daily at

midnight) or upon data availability (e.g., arrival of new data). The scheduling can

be done through internal orchestration logic or external scheduling tools.

 Defined Processing Logic: The Orchestration Layer manages the full lifecycle of

each scheduled job, executing a pre-defined sequence such as:

"Fetch input data → Trigger ISs → Gather results → Persist or dispatch results."

 Data Aggregation & Input Readiness: Since these workflows are planned,

required data (e.g., weather forecasts, grid price signals, building sensor values)

can be fetched just-in-time or scheduled to be available in advance via the

Middleware integration.

 Asynchronous & Scalable Execution: Heavy computations or long-running

simulations are offloaded to Kafka-connected IS tools. The system can run

multiple workflows in parallel without blocking operations.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 50

 Always-On Event Streams: Some workflows are continuous listeners to Kafka

topics, analyzing data streams in real time and acting upon specific triggers

(e.g., detecting equipment failures or grid anomalies).

Figure 16 - Components involved in a Scheduled Workflow

For the current version of the Service Layer, the scheduling logic is being

implemented inside the Orchestration Layer using lightweight cron-like timers. We

define each scheduled service in external configuration files that include:

 Workflow ID

 Execution time

 Participating ISs

 Expected Kafka topics for inputs/outputs

4.2 On-Demand (User-Triggered) Workflows

While scheduled services ensure continuous optimization and monitoring, On-

Demand Workflows provide the reactive flexibility needed to support user- or

system-initiated analytics, simulations, and operational overrides. These workflows

are triggered only when explicitly requested by an external actor, typically via the

API Gateway, and are often tied to decision-making processes, analysis needs, or

urgent interventions that cannot wait for the next scheduled cycle.

In the context of the EVELIXIA platform, many of the grid-level services (e.g.,

network planning, P2P trading strategies) and advanced building-side analyses are

delivered through on-demand workflows.

The main characteristics of an on-demand service include:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 51

 External Triggers via the API Gateway: When an authenticated external

request reaches the API Gateway, an on-demand service begins. The request

could either originate for an end-user in the Stakeholder Platform or a

Northbound API request (actuation signal).

 Context-sensitive execution: In these types of workflows, there are typically

input parameters involved. These input parameters should be verified and

included in the workflow results.

 Synchronous/Asynchronous flow: Shorter tasks should be returned on the

same request while longer tasks, return a workflow ID and its results are

stored in the Service Layer Database.

 Interaction with past results: On-demand workflows often utilize past data

that are persisted in the Service Layer Database, such as Digital Twin models

or aggregated forecasted loads. The workflow should ensure that these are

fetched in execution time to avoid timeouts and fatal errors.

Figure 17 - Components involved in an On-Demand Workflow

For the first version of the Service Layer, we have defined the orchestration logic

via:

 REST endpoints exposed by the Orchestration Layer (e.g., /execute, /status).

 In-memory or database-based job tracking.

 Kafka messages used to decouple orchestration from heavy computation.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 52

The configuration files for the on-demand services define the ISs needed, the

expected inputs/outputs schema and in later versions, the allowed roles or access

level.

4.3 EVELIXIA Services

With the two architectural patterns previously established, this section presents

the EVELIXIA Services (which were originally defined in D1.7), as fully implemented

and orchestrated workflows within the Service Layer. Each service entry outlines its

intent, category (B2G or G2B), type of trigger, involved IS tools, and the expected

outputs. Both categories are developed around the triad of Day-Ahead

Optimization, Investment Planning, and Maintenance, applied at the Building and

District/Grid levels, respectively. Where applicable, services are further

decomposed into smaller sub-workflows to reflect their modular structure and

highlight specific integration points.

4.3.1 B2G Services

B2G services refer to functionalities that enable the dynamic interaction between

the building and the electrical grid, enhancing operational efficiency and flexibility.

The EVELIXIA platform engages two main stakeholder groups, building users and

building engineers. Scheduled services support the building’s day-to-day

operation, focusing on optimizing energy performance in line with grid

requirements and incentive schemes, while ensuring user comfort. This category

also includes functions that monitor the condition and performance of building

equipment. On-demand services are designed to assist users in exploring

infrastructure upgrades and investment planning options, considering the added

value of grid interaction in a holistic manner. Table 11 summarizes the types of

services offered, along with the corresponding Innovative Solutions (ISs) involved in

each case.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 53

Table 11 - B2G Services and sub-services and involved components

Service ID Service Name Workflow Type Involved Components
S1 Building Operation Daily Optimization
S1.0 Day-Ahead Building

Forecasting
Scheduled Middleware → IS5 → IS1,

IS3, IS4
S1.1 Day-Ahead Building

Optimization -
Control Actions

Scheduled S1.0 → IS10 →
Middleware

S1.2 Day-Ahead Building
Optimization-
Recommendations

Scheduled S1.0 → S1.1 → IS9

S2 Building Investment Planning
S2.1 SRI Advisor On-Demand User Inputs via the

Stakeholder Platform,
Static Building Data
from Database → IS7

S2.2 Building Investment
Planning Assistant

On-Demand Middleware, User
Inputs via the
Stakeholder Platform,
Static Building Data
from Database → IS6

S3 Building Equipment
Maintenance

Scheduled Middleware → IS2

The execution of all services relies on data retrieved from building IoT systems via

the middleware layer, which ensures standardized data access across all included

Innovative Solutions. Figure 18 provides a high-level representation of the services

workflow within the platform. A detailed, step-by-step execution flow for each

service is provided in Section 5. At the current development stage, the focus is on

the operational deployment of each service. The initialization phase from the user’s

perspective will be elaborated in the next version of this delivery, once the services

are more mature in terms of required inputs and system integration.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 54

Figure 18 - B2G Services Overview

4.3.2 G2B Services

Following the structure of the previous section, Table 12 analyzes the services

provided at the grid level. In this context, the identified stakeholders are the grid

operators (for electricity or district heating) and the aggregators of buildings or

other grid-scale decentralized energy production and storage assets. Their

requirements are addressed by the EVELIXIA platform through a combination of

on-demand and scheduled services. Day-ahead operational optimization at the

grid level can be deployed either as an on-demand or scheduled service,

depending on the extent of engagement from grid-related stakeholders in the

decision-making process. Grid Maintenance is performed through continuous grid

monitoring and thus is considered scheduled, but an option for the user to perform

it upon request is also supported. Grid Investment Planning service is categorized

as on-demand and is typically initiated by the local energy network operator.

The execution of these services, as with building-level services, relies heavily on the

retrieval of IoT data from the field—in this case, the energy network. In addition to

grid-specific data, the Day-Ahead Optimization of energy flows also depends

significantly on data generated through the execution of B2G services, as these

reflect the anticipated energy demands and operational specifications of the nodes

in the energy network. Figure 19 illustrates an workflow overview from the data to

the IS level, for the the execution of each G2B service.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 55

Table 12 – G2B Services and involved components

Service ID Service Name Workflow Type Involved Components
S4 Grid Optimization
S4.1 Grid Congestion

Management
On-Demand User Inputs via the

Stakeholder Platform,
Middleware, IS4 → IS5 → IS12 →
IS15

S4.2 Portfolio
Management
Service

Scheduled S4.1, IS3, IS4 → IS13

S4.3 P2P Flexibility
Trading

Scheduled S4.1, IS3, IS4 → IS13

S5 Grid Investment
Planning

On-Demand User Inputs via the
Stakeholder Platform,
Middleware → IS15 → IS11

S6 Grid
Maintenance

Scheduled/ On-
Demand

Middleware → IS15 → IS14

Figure 19 - G2B Services Overview

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 56

5 MVP IMPLEMENTATION

This chapter documents the implementation of the Minimum Viable Product

(MVP) for the EVELIXIA Service Layer, following the architecture and workflow

patterns described in previous sections. The MVP constitutes a working prototype

demonstrating key platform capabilities in a centralized, containerized setup using

Docker Compose. It validates the design of the orchestration, integration, and

communication mechanisms through the envisioned services executions:

1. B2G/ S1.1 - Day-Ahead Building Forecasting / Scheduled

2. B2G/ S1.2 - Day-Ahead Building Optimization - Control Actions / Scheduled

3. B2G/S1.3 - Day-Ahead Building Optimization - Recommendations /

Scheduled

4. B2G/ S2.1 - SRI Advisor / On-Demand

5. B2G/ S2.2 – Building Investment Planning Assistant / On-Demand

6. B2G/ S3 - Building Maintenance / Scheduled

7. G2B/ S4.1 - Grid Congestion Management / On-Demand

8. G2B/ S4.2 - Portfolio Management Service / On-Demand

9. G2B/ S5 - Grid Investment Planning / On-Demand

10. G2B/ S6 - Grid Maintenance / On-Demand

5.1 Implementation Overview

Each Service Layer component was implemented using open-source tools to

ensure interoperability, as described in Chapter 3. Table 13 lists an overview of the

implementation.

Table 13 Technology Stack Overview

Component Technology Stack

Message Brokerage System Apache Kafka + Zookeeper

API Gateway Node.js/Express (5) + Kong OSS

Orchestration Layer Node.js/Express (5) + Docker Compose

Service Layer Database MongoDB

Innovative Solutions Docker Containers

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 57

A central JSON topic registry has been used by the Orchestration Layer to ensure

topic consistency and topics are referenced only through this configuration file.

Additionally, all services are defined in a Docker Compose (YAML) file that specify

environment variables and other necessary configurations for the internal

communication of the Layer. No database ports are directly exposed outside the

internal environment and any variables are passed for the Broker to ensure

interoperability.

5.2 S1.0 - Day-Ahead Building Optimization - Forecasting

This section describes a complete execution of a B2G service that is scheduled to

run daily. The service selected is Day-Ahead Building Optimization - Forecasting,

implemented in the first version using IS containers and the full-Service Layer stack.

The workflow leverages all core components (API Gateway, Orchestrator, Kafka

Broker, and multiple ISs) to coordinate a multi-step optimization and simulation

flow, returning results to the user and storing them for future reference.

The high-level Use Case for this service can be found in Table 14:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 58

Table 14 - S1.0 Day-Ahead Building Forecasting

Service Use Case
Name

 S1.0 – Day-Ahead Building Optimization - Forecasting

Type B2G
Architectural Pattern Scheduled
Actors Involved Main Actor: Building Engineers

Secondary Actor: Building Owner, Tenant, User, Facility
Manager

Brief Description 1. Every day at 00:00, this service is automatically
triggered, by requesting new IoT Building Data from
the Middleware.

2. The Building Energy Modelling and Simulation (IS5)
is triggered by the new IoT data to create the model
for the building and the energy simulation.

3. The simulation results and the IoT data are fed to the
IAQ (IS1), Demand (IS3) and Flex Forecasting (IS4) to
be used for predicting the behaviour of the building
for the next 24 hours.

4. The building day-ahead operation profile is generated
and the analytic results for the next 24-hours are
stored on the EVELIXIA platform for later use.

Alternate Flow/
exceptions

 In the case that there are not available IoT data the
training of the forecasting ISs takes place only with the
data generated from the Building Energy Modelling
and Simulation (IS5)

Assumptions and
Pre-conditions

 Existence of building documentation
 Existence of historic data

Trigger  Daily Schedule
Goal  The building model is ready to be used by the rest of

the IS in Service 1.
 The Forecasting ISs have been trained and are able to

generate forecast reports.
Pre-Conditions (UCs)  None.
Post-Conditions (UCs)  S1.1 - Day-Ahead Building Optimization - Control

Actions
 S1.2 - Day-Ahead Building Optimization -

Recommendations

For the purposes of this deliverable and to stay within its scope, the following

assumptions were made:

 Since the integration between the Service Layer and Middleware will be

implemented in T5.1, we have not received any real IoT Pilot data for this

workflow. Instead, a test stream has been utilized for this implementation.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 59

 For the same reason, we have also considered that the Building Energy

Modelling Digital Twin (IS5) has been initialized previously with the required

building BIM files and static metadata from the Pilot Site. The initial Pilot Site

for this current execution is the Greek Pilot Site (PS5).

 Similarly, we consider that the training of the Analytical Tools (IS1, IS3 and

IS4) has already been performed using historical data during their

development phase.

 The user does not need to initiate the analysis through the Stakeholder

Platform since this is a scheduled workflow that will begin automatically at

00:00. We have chosen this time in order to produce 24-hour timeseries for

the whole day ahead.

The involved components are:

 Stakeholder Platform (User Input / UI)

 API Gateway

 Middleware (test stream)

 Orchestration Layer

 Message Broker

 IS5: Building Energy Modelling and Simulation

 IS1: Indoor Air Quality measurement

 IS3: Demand Forecasting

 IS4: Flex Forecasting

 Service Layer Database

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 60

Figure 20 illustrates the cross-functional flowchart of the service’s workflow:

Figure 20: Day-Ahead Building Optimization - Forecasting – Workflow

1. Orchestrator Triggers Workflow Automatically (00:00)

 The Orchestrator generates a new workflow_id

 Queries the Middleware to retrieve the latest Building IoT Data for the

current day

 Prepares the orchestration context for the scheduled S1.0 service

2. API Gateway Retrieves Building IoT Data from Middleware

 The API Gateway fetches IoT readings from Middleware (simulated test

stream in MVP)

 The data is received and posted into the Service Layer via the topic:

gr1.middleware.iot

3. Broker Publishes IoT Data to Relevant Topic

 Kafka publishes the structured JSON data received from Middleware into the

topic gr1.middleware.iot

 This acts as a trigger for all downstream IS tools that subscribe to the topic

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 61

Figure 21 - Sample IoT payload to be used by S1

4. IS5: Building Simulation Triggered

 IS5 listens to gr1.middleware.iot

 It retrieves the latest building data and runs a baseline building energy

simulation

 The output (hourly building energy metrics for the next 24h) is published to:

gr1.IS5.output

Figure 22 - Sample payload for IS5 for S1.0

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 62

5. IS1, IS3, IS4 Triggered by New IoT + Simulation Data

 Each forecasting tool (IS1 for IAQ, IS3 for Demand, IS4 for Flexibility) is

triggered by the arrival of data on middleware.iot and IS5.output

 They compute their respective 24h predictions and publish to:

o gr1.IS1.output – Indoor Air Quality Forecast

o gr1.IS3.output – Demand Forecast

o gr1.IS4.output – Flexibility Forecast

Figure 23 - Sample payload for IS1 output

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 63

Figure 24 - Sample payload for IS3

Figure 25 - Sample payload for IS4

6. Orchestrator Collects Results and Stores in DB

 The orchestrator listens to all relevant output topics (IS1, IS3, IS4, IS5)

 Once all results are received, it aggregates them and stores them under the

current workflow_id in the Service Layer Database

 Metadata (e.g., timestamps, pilot, service_id, etc.) is attached to each

document

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 64

Figure 26 - Service Database entry for successful S1.0 workflow execution

7. Service Results Exposed to Frontend

 The orchestrator exposes the full output set via an endpoint for workflow

results

 The Stakeholder Platform can retrieve the results using the workflow_id

8. User Accesses Results via Stakeholder Platform

 Results are visualized as charts and recommendations for

engineers/operators

 Data can be used directly or routed to subsequent services (e.g., S1.1)

5.3 S1.1 - Day-Ahead Building Optimization – Equipment
Control

This section describes a complete execution of a B2G service that is scheduled to

run daily. The service selected is Day-Ahead Building Optimization - Control

Actions, implemented in the first version using IS containers and the full-Service

Layer stack. The workflow leverages all core components (API Gateway,

Orchestrator, Kafka Broker, and multiple ISs) to coordinate a multi-step

optimization and simulation flow, returning results to the user and storing them for

future reference.

The high-level Use Case for this service can be found in Table 15:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 65

Table 15 – S1.1 - Day-Ahead Building Optimization – Equipment Control

Service Name 5.3 S1.1 - Day-Ahead Building Optimization –

Equipment Control

Type B2G

Architectural Pattern Scheduled

Actors Involved Main Actor: Building Owner, Tenant, User, Facility Manager

Secondary Actor: Building Engineers

Brief Description 1. Every day this service is automatically triggered by
the daily forecasts and simulations produced by S1.1.

2. The forecasted values trigger the Continuous
Energy Performance Management (IS10) to retrieve
the already existing IoT data from the IoT topic.

3. Utilizing the IoT Data and the forecasts from S1.1, IS10
generates indoor trends and an optimal schedule for
the operation of the HVAC equipment for the next
day.

4. The indoor trends are forwarded to the end-user via
the Stakeholder Platform.

5. The control set-points are sent to the HVAC
equipment via the Middleware to be implemented
the next day.

Alternate Flow/

exceptions

If by 01:00 there are no new S1.1 results or IoT data to

automatically trigger IS10, the orchestrator pulls data from

the previous day to provide to the tool.

Assumptions and

Pre-conditions

 The building model has to be initialized and updated

 The building needs to have the appropriate control

equipment for its equipment and devices.

Trigger  Daily Schedule

 S1.1 Results

Goal (Successful End

Condition)

 The end user is informed for the actions that needs to

be implemented to operate efficiently their building.

The equipment with control capabilities operate

according to the set-points generated by the

EVELIXIA platform.

Pre-Conditions (UCs)  S1.1. Day-Ahead Building Forecasting

Post-Conditions(UCs)  S1.3 - Day-Ahead Building Optimization -

Recommendations

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 66

For the purposes of this deliverable and to stay within its scope, the following

assumptions were made:

 Since the integration between the Service Layer and Middleware will be

implemented in T5.1, we have not received any real IoT Pilot data for this

workflow. Instead, a test stream has been utilized for this implementation.

 Additionally, for the same reason, the actuation signal that this service will

produce (control actions), will not be provided to the Middleware at this

version.

 The user does not need to initiate the analysis through the Stakeholder

Platform since this is a scheduled workflow that will begin automatically

after the completion of S1.1 or at a scheduled time (01:00). We have chosen

this time in order to produce 24-hour timeseries for the whole day ahead.

 We also assume that the S1.1 has been finalized successfully and the results

of IS5, IS1, IS3 and IS4, that are required for the execution of S1.2, are already

existing in the Message Broker. In case of failed S1.1 workflow, the previous

day results will be utilized, but this is not a scenario we will not expand in this

in this section.

The involved components are:

 Stakeholder Platform (User Input / UI)

 API Gateway

 Middleware (test stream)

 Orchestration Layer

 Message Broker

 IS10: Continuous Energy Performance Management (CEPM)

 Service Layer Database

Figure 27 illustrates the cross-functional flowchart of the service’s workflow:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 67

Figure 27 - S1.1 - Day-Ahead Building Optimization – Equipment Control Workflow

1. Daily Trigger and Metadata Generation: At 01:00, the orchestrator

generates a new workflow_id and stores initial metadata in MongoDB,

marking the start of the control action service.

2. IoT Data and Forecast Availability: At this point, building IoT data has

already been published to the topic gr1.middleware.iot by the Middleware.

Similarly, the results from the forecasting ISs (IS5, IS1, IS3, IS4) are already

present in the topics:

 gr1.IS5.output (baseline simulation)

 gr1.IS1.output (indoor air quality forecast)

 gr1.IS3.output (demand forecast)

 gr1.IS4.output (flex forecast)

3. IS10 Triggered by Data Availability: The Continuous Energy Performance

Management IS (IS10) is triggered when it detects that the required data

from the IoT stream and the forecasting ISs are available. It retrieves this

information from the broker and performs its optimization logic.

4. IS10 Publishes Control Actions: IS10 generates:

 Indoor environmental trends (e.g., temperature, comfort levels)

 HVAC control schedules (e.g., hourly set-points for the following day)

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 68

 It publishes these in the topic gr1.IS10.output.

Figure 28 - Example payload of IS10

5. Orchestrator Receives and Stores IS10 Results: The orchestrator,

subscribed to gr1.IS10.output, consumes the results, attaches them to the

workflow metadata, and stores everything in the Service Layer database.

6. Control Signal Transmission via API Gateway: The orchestrator posts the

control signals to the Middleware via the API Gateway for actuation. This step

is mocked in the MVP and will be handled via a secure HTTP endpoint in T5.1.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 69

Figure 29 - Example payload for the control signal provided to the middleware (to be
implemented in T5.1)

7. Results Made Available to UI: The results are exposed via the orchestrator’s

results endpoint /api/service/status/{workflow_id} and made available to the

Stakeholder Platform.

5.4 S1.2 - Day-Ahead Building Optimization - User
Recommendations

This section describes a complete execution of a B2G service that is scheduled to

run daily. The service selected is Day-Ahead Building Optimization -

Recommendations, implemented in the first version using IS containers and the

full-Service Layer stack. The workflow leverages all core components (API Gateway,

Orchestrator, Kafka Broker, and multiple ISs) to coordinate a multi-step

optimization and simulation flow, returning results to the user and storing them for

future reference.

The high-level Use Case for this service can be found in the Table 16:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 70

Table 16 - Day-Ahead Building Optimization – User Recommendations

Service Name S1.2. Day-Ahead Building Optimization – User

Recommendations

Type B2G

Architectural Pattern On-demand

Actors Involved Main Actor: Building Owner, Tenant, User, Facility Manager

Secondary Actor: Building Engineers

Brief Description 1. Every day this service is automatically triggered by the

results produced by S1.2.

2. The S1.2 results trigger the Proactive Demand

Planning (IS9) to retrieve the already existing IoT data

from the IoT topic, as well as, the forecasted values from

IS1, IS3 & IS4 and the HVAC schedule from IS10 that exist

in their own topics.

3. IS9 generates recommendations for the optimization

of the operation of the building’s flexible loads for the

next day.

4. The recommendations are forwarder to the end-user

via the Stakeholder Platform.

Alternate Flow/

exceptions

 If by 01:30 there are no new S1.2 and S1.1 results or IoT

data to automatically trigger IS9, the orchestrator pulls

data from the previous day to provide to the tool.

Assumptions and

Pre-conditions

 The building model has to be initialized and updated

Trigger  Daily Schedule

 S1.1 Results

Goal The end user is informed for the actions that needs to be

implemented to operate efficiently their building.

Pre-Conditions (UCs)  S1.0. Day-Ahead Building Forecasting

 S1.2 - Day-Ahead Building Optimization - Control

Actions

Post-Conditions (UCs)  None.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 71

For the purposes of this deliverable and to stay within its scope, the following

assumptions were made:

 Since the integration between the Service Layer and Middleware will be

implemented in T5.1, we have not received any real IoT Pilot data for this

workflow. Instead, a test stream has been utilized for this implementation.

 The user does not need to initiate the analysis through the Stakeholder

Platform since this is a scheduled workflow that will begin automatically

after the completion of S1.2 or at a scheduled time (01:30). We have chosen

this time according to the approximate execution time of S1.2 in order to

produce 24-hour timeseries for the whole day ahead.

 We also assume that both S1.1 and S1.2 have been finalized successfully and

the results of IS5, IS1, IS3, IS4 and IS10, that are required for the execution of

S1.3, are already existing in the Message Broker. In case of failed S1.1 or S1.2

workflow, the previous day results will be utilized, but this is not a scenario

we will not expand in this in this section.

The involved components are:

 Stakeholder Platform (User Input / UI)

 API Gateway

 Middleware (test stream)

 Orchestration Layer

 Message Broker

 IS9: Proactive Demand Planning

 Service Layer Database

Figure 30 illustrates the cross-functional flowchart of the service’s workflow:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 72

Figure 30 - Day-Ahead Building Optimization – User Recommendations Workflow

1. Scheduled Trigger and Metadata Initialization: At 01:30, the orchestrator

assigns a new workflow_id, stores metadata in the database, and marks the

workflow as ready. It is assumed that results from previous services (IS5, IS1,

IS3, IS4, and IS10) are already present in their respective topics.

2. IS9 Triggered by Prior Results: The Proactive Demand Planning module

(IS9) is triggered by the availability of IS10’s control signals (from

gr1.IS10.output). Upon trigger, IS9 retrieves:

 IoT Data from gr1.middleware.iot

 Forecasting Data from gr1.IS1.output, gr1.IS3.output, and gr1.IS4.output

 HVAC Control Signals from gr1.IS10.output

3. IS9 Publishes Building Optimization Recommendations: IS9 processes all

retrieved information and generates a set of proactive planning

recommendations for flexible load optimization, which are published to the

topic gr1.IS9.output.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 73

Figure 31 - Sample payload for the outputs of IS9

4. Orchestrator Collects and Persists Results: The orchestrator, subscribed to

gr1.IS9.output, gathers the recommendation output and stores it into

MongoDB under the corresponding workflow_id.

5. Results Made Available to Frontend: The orchestrator exposes the results

under /api/service/status/{workflow_id}. The Stakeholder Platform retrieves

and visualizes the final results.

5.5 S2.1 – Building Investment Planning - SRI Advisor

This section describes a complete execution of a B2G service that is triggered on-

demand by the user. The service selected is SRI Advisor, implemented in the first

version using IS containers and the full-Service Layer stack. The workflow leverages

all core components (API Gateway, Orchestrator, Kafka Broker, and multiple ISs) to

coordinate a multi-step analytical flow, returning results to the user and storing

them for future reference.

The high-level Use Case for this service can be found in Table 17:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 74

Table 17 - S2.1 Building Investment Planning - SRI Advisor

Service Name S2.1 Building Investment Planning - SRI Advisor
Type B2G
Architectural Pattern On-demand
Actors Involved Main Actor: Engineers, Building designers

Secondary Actor: Building user / Building Operator
Brief Description 1. The building engineer inserts the EVELIXIA Building

Investment Planning Toolbox and requests to use the
service.

2. The user inputs a set of parameters related to the
existing SRI assessment of the building, the
characteristics of the building and the preferences for
the generated set of recommendations.

3. The engineer uploads the data from the SRI
assessment and the preferences that the building
owner has indicated. The building characteristics can
be retrieved from the existing information on the
EVELIXIA platform or added by the engineer via a
dedicated user interface.

4. The SRI Advisor Tool (IS7) is triggered by the user
inputs, and generates a set of upgrades, tailored to the
user preferences.

5. The generated report is stored to the platform and
forwarded to the building engineer.

Assumptions and
Pre-conditions

 An SRI assessment should exist.

Alternate Flows  None
Trigger  The building engineer requests to use the service.
Goal  The building engineer gets a stepwise set of upgrades

that indicates the installation of the equipment to
upgrade the smartness of their building.

Pre-Conditions (UCs)  None
Post-Conditions (UCs)  None

For the purposes of this deliverable and to stay within its scope, the following

assumptions were made:

 Static building information (e.g., BIM) are, for this version, stored in the

Service Database. We will also explore storing this information on the Digital

Building Logbook (IS16).

 The user initiates the SRI by inputting a set of parameters through a

questionnaire form in the Stakeholder Platform and hitting “Run”.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 75

The involved components are:

 Stakeholder Platform (User Input / UI)

 API Gateway

 Middleware (test stream)

 Orchestration Layer

 Message Broker

 IS7: SRI Advisor

 Service Layer Database

Figure 32 illustrates the cross-functional flowchart of the service’s workflow:

Figure 32 - Building Investment Planning - SRI Advisor Workflow

1. User Sends Request: The building engineer accesses the EVELIXIA Building

Investment Planning toolbox and fills out a questionnaire with parameters derived

from an SRI assessment, preferences, and optionally selects a building from the

platform.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 76

2. API Gateway Routes Request: The request is posted to /api/service/execute/s2_1

with user input. The API Gateway validates and forwards the request internally to

the Orchestrator.

3. Orchestrator Generates Workflow and Fetches Metadata: Generates a unique

workflow_id for the session.

 Pulls static building metadata from the database based on the selected

building ID.

 Aggregates user input and building metadata.

 Publishes the structured trigger payload to Kafka topic: gr1.s2_1.trigger.

Figure 33 - Sample S2.1 trigger payload

4. Broker Receives Trigger Message: Kafka receives the message and stores it on

the s2_1.trigger topic, available to IS7.

5. IS7 Consumes Trigger and Executes Analysis: IS7, listening on s2_1.trigger,

retrieves the payload, processes the building metadata and SRI parameters, and

computes a tailored upgrade plan. Results are published to the s2_1.output topic.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 77

Figure 34 - Sample payload for the results of IS7

6. Orchestrator Gathers Results and Stores: The orchestrator consumes results

from s2_1.output, validates their format, and stores them in the Results collection

under the generated workflow_id.

Figure 35 - Sample payload for the database entry for S2.1

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 78

7. API Gateway Serves Results: Upon user request (GET

/api/service/results/{workflow_id}), the gateway returns the structured SRI

recommendations to the Stakeholder Platform.

8. User Views the Upgrade Report: The building engineer views a set of ranked

equipment upgrade suggestions, including estimated costs, impact on smartness,

and expected return.

5.6 S2.2 – Building Investment Planning - VERIFY

This section describes a complete execution of a B2G service that is triggered on-

demand by the user. The service selected is the Building Investment Planning

Assistant, implemented in the first version using IS containers and the full-Service

Layer stack. The workflow leverages all core components (API Gateway,

Orchestrator, Kafka Broker, and multiple ISs) to coordinate a multi-step analytical

flow, returning results to the user and storing them for future reference.

The high-level Use Case for this service can be found in Table 18:

For the purposes of this deliverable and to stay within its scope, the following

assumptions were made:

 Static building information (e.g., BIM) are, for this version, stored in the

Service Database. We will also explore storing this information on the Digital

Building Logbook (IS16).

 Since the integration between the Service Layer and Middleware will be

implemented in T5.1, we have not received any real IoT Pilot data for this

workflow. Instead, a test stream has been utilized for this implementation.

 The user initiates the service by inputting a set of pre-defined upgrade

scenarios that they want to investigate and compare through a

questionnaire form in the Stakeholder Platform and hitting “Run”.

The involved components are:

 Stakeholder Platform (User Input / UI)
 API Gateway
 Middleware (test stream)
 Orchestration Layer
 Message Broker
 IS6: Building Investment Planning Assistant
 Service Layer Database

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 79

Table 18: Building Investment Planning - VERIFY

Service Name S2.2 Building Investment Planning - VERIFY

Type B2G
Architectural
Pattern

On-demand

Actors Involved Main Actor: Engineers, Building designers
Secondary Actor: Building user / Building Operator

Brief Description 1. The building engineer inserts the EVELIXIA Building
Investment Planning Toolbox and requests to use the
service.

2. The engineer develops the model of the building by
inserting a set of related documentation.

3. This information can be retrieved from the existing
information on the EVELIXIA platform or added by the
engineer via a dedicated user interface.

4. After having constructed the building’s model, the engineer
sets a series of retrofitting scenarios that they want to
investigate and the Investment Planning Assistant (IS6)
performs the LCC analysis, calculates financial KPIs and
performs a comparative analysis between the scenarios for
the selected analysis period-timespan and generates a
report.

5. The generated report is stored to the platform and
forwarded to the building engineer.

Assumptions and
Pre-conditions

 The required input data to setup the building model,
and operational data regarding its systems,
components and energy performance should be
provided in advanced. The sensor data should be
coherent and accurate.

 The engineer should provide a set of pre-defined
upgrade scenarios that wants to investigate and
compare.

Alternate Flows  None
Trigger  The building engineer requests to use the service.
Goal  The building engineer gets a report with the LCA/LCC

analysis and the resulting quantitative metrics for each
scenario.

Pre-Conditions (UCs)  None
Post-Conditions (UCs)  None

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 80

Figure 36 illustrates the cross-functional flowchart of the service’s workflow:

Figure 36 - Building Investment Planning - VERIFY Workflow

1. User Sends Request via Stakeholder Platform: The user (e.g., building

engineer or designer) accesses the Stakeholder Platform and selects the

“Building Investment Planning Assistant” service. They choose from a set of

predefined upgrade scenarios.

2. API Gateway Forwards the Request: The Stakeholder Platform sends an

HTTP POST request to /api/service/execute/building_investment_assistant.

The API Gateway verifies the request and routes it to the Orchestrator.

3. Orchestrator Generates Workflow & Prepares Trigger Payload

The orchestrator:

 Generates a unique workflow_id

 Retrieves static building information from the Service Database

 Collects dynamic building data from the Middleware (simulated for MVP)

 Composes a structured workflow trigger payload

 Publishes this payload to the Kafka topic gr1.S2_2.trigger

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 81

Figure 37 - Sample payload for the trigger message of S2.2

4. Kafka Broker Publishes Trigger to Subscribed ISs: The broker receives the

payload and makes it available on the topic. IS6 is subscribed to this topic

and is triggered.

5. IS6 Executes LCC & Financial KPI Computation: The Building Investment

Planning Assistant (IS6) receives:

 User inputs (scenarios, timespan)

 Building characteristics (static metadata)

 IoT data (if available).

It performs financial simulations and publishes the results to the

gr1.IS6.output topic.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 82

Figure 38 - Sample payload for IS6 outputs

6. Orchestrator Aggregates and Stores Results: Subscribed to the output

topic, the Orchestrator collects the final KPIs and recommended investment

plan and stores them in the Service Database under the same workflow_id.

7. Results Are Made Available to the Frontend: A new API endpoint (e.g.,

/api/service/results/:workflow_id) exposes the results. The Stakeholder

Platform retrieves and presents them to the user in a visual format (e.g., ROI

bar chart, NPV comparison, etc.).

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 83

5.7 S3 - Building Equipment Maintenance

This section describes a complete execution of a B2G service that is triggered on-
demand by the user. The service selected is the Building Equipment Maintenance,
implemented in the first version using IS containers and the full-Service Layer stack.
The workflow leverages all core components (API Gateway, Orchestrator, Kafka
Broker, and multiple ISs) to coordinate a multi-step analytical flow, returning results
to the user and storing them for future reference.
The high-level Use Case for this service can be found in Table 19:

Table 19 - Building Equipment Maintenance

Service Name S3 Building Equipment Maintenance
Type B2G
Architectural Pattern On-demand
Actors Involved Main Actor: Building Operator/ Facility Manager

Secondary Actor: Building Owner, User
Brief Description 1. The building operator logs into the EVELIXIA Platform

and subscribes to the EVELIXIA Building Maintenance
Toolbox and gains access to the Energy Assets
Maintenance (IS2) tool.

2. The platform requests documentation related to the
battery storage units and their cooling system, as well
as the Domestic Hot Water Storage tank. It also
requests interconnection with sensors monitoring the
equipment status. This information can be retrieved
from the platform if it already exists; otherwise, the end-
user can provide it.

3. Once it has access to the necessary information, the
Energy Assets Maintenance (IS2) module conducts
periodic tests to monitor and check the equipment's
status.

4. If the module detects a malfunction, it sends a
notification to the end-user to resolve the issue by the
following day.

Assumptions and
Pre-conditions

 The building must be equipped with battery storage
units and a battery cooling system, as well as a Domestic
Hot Water Storage tank. Additionally, these systems
should be outfitted with sensors to monitor their health
status.

Trigger  The building operator requests to use the building
Equipment Maintenance toolbox.

Goal  The building operator is always informed about the
health status of the equipment and receives on-time
notification in case of a malfunction.

Pre-Conditions (UCs)  None
Post-Conditions (UCs)  None

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 84

For the purposes of this deliverable and to stay within its scope, the following

assumptions were made:

 Since the integration between the Service Layer and Middleware will be

implemented in T5.1, we have not received any real IoT Pilot data for this

workflow. Instead, a test stream has been utilized for this implementation.

 The user does not need to initiate the analysis through the Stakeholder

Platform since this is a scheduled workflow that will begin automatically at

a scheduled time (00:00). We have chosen this time in order to produce 24-

hour timeseries for the whole day ahead.

The involved components are:

 Stakeholder Platform (User Input / UI)

 API Gateway

 Orchestration Layer

 Message Broker

 IS2: Energy Assets Maintenance

 Service Layer Database

Figure 39 illustrates the cross-functional flowchart of the service’s workflow:

Figure 39 - Building Equipment Maintenance workflow

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 85

1. Workflow Initialization by Orchestrator: At 00:00, the orchestrator

generates a new workflow_id. It records metadata in the database

(workflow_id, timestamp, pilot). A request is sent to retrieve the latest IoT

data for the building via the Middleware adapter.

2. IoT Data Ingested via Middleware

 Middleware returns recent IoT data from relevant building sensors

(temperature, charge cycles, pressure, etc.).

 Middleware pushes the data to the Kafka topic: gr1.middleware.iot.

3. IS2 Triggered by IoT Data

 The Energy Assets Maintenance module (IS2) is subscribed to

gr1.middleware.iot.

 Upon receiving the data, it processes the equipment health checks and

computes the relevant KPIs.

Figure 40 - Sample payload for the output of IS2

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 86

4. IS2 Produces Diagnostic Results

 IS2 publishes results to gr1.IS2.output.

 The output includes health KPIs, diagnostic messages, and flags for

components needing attention.

5. Orchestrator Stores Final Results

 The orchestrator consumes the results from IS2.

 It logs them to the database under the current workflow_id and marks

the workflow as complete.

6. Frontend Retrieves and Presents Results: When the user queries the

endpoint for workflow_id, results are presented via the Stakeholder Platform.

5.8 S4.1 - Grid Congestion Management

This section describes a complete execution of a G2B service triggered on-demand

by the user. The service selected is Grid Congestion Management, implemented in

the first version using IS containers and the full-Service Layer stack. The workflow

leverages all core components (API Gateway, Orchestrator, Kafka Broker, and

multiple ISs) to coordinate a multi-step optimization and simulation flow, returning

results to the user and storing them for future reference.

The high-level Use Case for this service can be found in Table 20:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 87

Table 20 - S4.1 Grid Congestion Management

Service Name S4.1 Grid Congestion Management
Type G2B
Architectural Pattern On-demand /Scheduled
Actors Involved Main Actor: Grid Operator (DSO)

Secondary Actor:
Brief Description 1. The Aggregator logs in the EVELIXIA platform and requests

the activation of the Grid congestion management service.
2. The initial step involves gathering and organizing energy

profile forecasts for the day ahead from all assets in the
energy network.

3. This information is then sent to the Multi-Vector Grids
Energy Modelling & Simulation (IS15) to simulate the
operation ον grid level and detect potential congestion
instances.

4. The outcomes from these simulations are forwarded to the
Multi-Vector Network Manager (IS12), which employs an
optimization algorithm to define the optimal dispatch
schedule of the large DER resources on the grid
(generation and storage).

5. The optimization results are sent back to the Multi-Vector
Grids Energy Modelling & Simulation (IS15) to simulate
the optimized power flow analysis.

6. Finally, the optimized results are communicated back to
the DSO who issues the Day- Ahead DER Dispatch
schedule.

Assumptions and
Pre-conditions

- Information/ models for DER units  the energy profile
forecasts generated by the Flex Forecast (IS4)

Trigger The request of the aggregator for the calculation of a dispatch
schedule.

Goal The Aggregator possesses a day-ahead dispatch schedule that
serves as a guideline for managing the grid scale energy
resources efficiently.

Pre-Conditions (UCs) S1 – Building Management Optimization
Post-Conditions (UCs) None

For the purposes of this deliverable and to stay within its scope, the following

assumptions were made:

 Since the integration between the Service Layer and Middleware will be

implemented in T5.1, we consider that the District Digital Twin (IS15) has been

initialized previously with the required grid topology and static metadata

from the Pilot Site. The initial Pilot Site for this current execution is the Greek

Pilot Site (PS5).

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 88

 The Flex Forecasting IS (IS4) has published next-day energy forecasts for

each node/building into its output topic (gr1.IS4.output) at 00:00.

 The user initiates the analysis by inputting flexibility and curtailment cost

parameters through the Stakeholder Platform and hitting “Run”.

 A scheduled version of this service is also applicable, but in this section we

will focus on the on-demand version.

The involved components are:

 Stakeholder Platform (User Input / UI)

 API Gateway

 Orchestration Layer

 Message Broker

 IS15: Multi-Vector Grids Energy Modelling & Simulation

 IS12: Multi-vector Network Manager

 Service Layer Database

Figure 41 illustrates the cross-functional flowchart of the service’s workflow:

Figure 41 Grid Congestion Management Workflow (on-demand version)

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 89

1. User Sends Request: The user enters parameters (e.g., upward/downward

flexibility penalties, generation curtailment cost) in the Stakeholder Platform and

triggers the workflow.

Figure 42 - User Trigger for the initialization of the Grid Congestion Management
Service

2. API Gateway Routes Request: The request is sent via HTTP to the endpoint

/api/service/execute/grid_congestion_management. The API Gateway forwards it

internally to the Orchestrator’s planning endpoint.

3. Orchestrator Generates Workflow and Publishes Trigger:

 Assigns a new workflow_id

 Stores initial metadata in MongoDB (workflow_id, user, timestamp,

parameters)

 Publishes a structured JSON message to the service trigger topic gr1.

grid_congestion_management.trigger. Payload includes workflow_id, user

inputs, timestamp

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 90

Figure 43 - Generated Orchestrator Payload for the Grid Congestion Management
Service

4. Broker Receives Trigger Message: Kafka receives the message and makes it

available to any component subscribed to the service topic.

5. IS15 and IS12 Consume the Trigger

 IS15 consumes the trigger from the topic, checks for the latest forecasts in

gr1.IS4.output, and starts a baseline simulation.

 IS12 also consumes the trigger and waits for results from IS15 before starting

its optimization.

6. IS15 Produces Baseline Simulation Results: IS15 publishes power flow

simulation results to its output topic gr1.IS15.output. These include values for

active/reactive power, voltage magnitude, and angle for each node.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 91

Figure 44 - Initial Baseline results payload from IS15

7. IS12 Consumes IS15 Results and Executes Optimization: IS12 reads the

gr1.IS15.output and performs optimization based on:

 Baseline grid status

 Flexibility requirements

 User-defined penalties

IS12 then publishes the optimization results to gr1.IS12.output, containing:

 Allocated flexibility per node

 Curtailment values

 Operational metrics and cost impacts

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 92

Figure 45 - Initial IS12 Payload

8. IS15 Consumes IS12 Output and Re-runs Simulation: IS15 reads the updated

flexibility profile from IS12 and executes a post-optimization power flow simulation,

again producing power-related metrics. Results are published again to

gr1.IS15.output, tagged as post-optimization.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 93

Figure 46 - Optimized IS15 Payload after IS12 optimization

9. Orchestrator Collects Final Results: The Orchestrator, subscribed to both IS12

and IS15 output topics, collects:

 The baseline and post-optimization simulation results

 Optimization decisions and metrics

These results are aggregated into a structured result object and inserted into the

MongoDB Results collection.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 94

Figure 47 - Service Database Grid Congestion Management payload

10. Results Are Made Available to the Frontend: The Orchestrator responds via

the API with the results, now accessible to the Stakeholder Platform. These include:

 Baseline and optimized power flow states

 Node-level flexibility allocations

 Cost metrics and investment suggestions

11. User Views Results: The platform visualizes the results using charts or tables for

the operator — who now receives a report showing the system's performance with

and without optimization.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 95

5.9 S4.2 - Portfolio Management

This section describes a complete execution of a G2B service triggered

automatically by the EVELIXIA Ecosystem. The service selected is Portfolio

management services, implemented in the first version using IS containers and the

full-Service Layer stack. The workflow leverages all core components (API Gateway,

Orchestrator, Kafka Broker, and multiple ISs) to coordinate a multi-step

optimization and simulation flow, returning results to the user and storing them for

future reference.

The high-level Use Case for this service can be found in Table 21:

Table 21: Portfolio Management

Service Name S4.2 Portfolio management

Type G2B

Architectural Pattern Scheduled

Actors Involved Main Actor: Aggregator

Secondary Actor: DSO, Grid Customer (Large Industrial

customers, Pooled non-industrial customers)

Brief Description 1. Every day this service is automatically triggered by the

results produced by S4.1 and S1.0.

2. The generated energy profiles for the day-ahead behaviour

of all the assets managed by the Aggregator (from S1.0) and

the Day-Ahead Dispatch schedule (from S 4.1) are forwarded

to the Aggregated Demand Portfolio Manager (IS13),

which employs an optimization algorithm to refine the

energy schedules per managed asset.

3. The generated results are forwarded to the end-user via the

Stakeholder Platform.

Assumptions and

Pre-conditions

All the assets managed by the aggregator have to be

subscribed to the S1 Building Management Optimization so the

Forecasted energy behaviour can be generated for each

building.

Trigger  DER Dispatch Schedule

 Day- Ahead Energy Consumption/ Generation

Forecasting

Goal The Aggregator possesses an optimization schedule that serves

as a guideline for portfolio management of their assets.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 96

Pre-Conditions (UCs)  S1.0. Day-Ahead Building Forecasting

 S4.1 -Grid Congestion Management

Post-Conditions (UCs)  None.

For the purposes of this deliverable and to stay within its scope, the following

assumptions were made:

 Since the integration between the Service Layer and Middleware will be

implemented in T5.1, the real-time exchange with flexibility market

platforms or physical DERs is not active in this version. Instead, test forecasts

and schedules generated by S1.0 and S4.1 have been used.

 It is assumed that all assets managed by the aggregator are already

registered in the EVELIXIA platform and properly linked to S1 and S4 services,

enabling the automatic retrieval of required forecasting and dispatching

data.

 The S1.0 Building Forecasting Service and S4.1 Grid Congestion Management

Service have already been completed for the current day before S4.2 is

executed. Their output data are published in the broker and accessible for

consumption by IS13.

 For this version, the Aggregator’s asset list and ownership structure are

assumed to be static and preconfigured in the Service Layer Database.

Future versions will allow dynamic configuration of portfolios via the

Stakeholder Platform.

 The optimization output is intended as a recommendation layer, and no

automatic control actions are dispatched to real systems in this version.

Dispatch enforcement or signal translation to DERs is planned for later

stages.

The involved components are:

 Stakeholder Platform (User Input / UI)

 API Gateway

 Orchestration Layer

 Message Broker

 IS13: Aggregated Demand Portfolio Manager

 Service Layer Database

Figure 48 illustrates the cross-functional flowchart of the service’s workflow:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 97

Figure 48 - Portfolio Management Workflow

 Orchestrator Generates Workflow ID and Initializes Metadata: The

Orchestrator automatically triggers the Portfolio Management service at

01:00. It generates a unique workflow_id, stores initial metadata into the

database, and begins monitoring the relevant topics.

 Forecasts and Dispatch Results Are Published by Previous Services: IS3

(Demand Forecasting), IS4 (Flex Forecasting), and IS12 (Dispatch Scheduling)

have already produced their outputs to Kafka topics (IS3.output, IS4.output,

and IS12.output). These contain per-building energy forecasts and dispatch

schedules for the upcoming day.

 IS13 Consumes Inputs and Executes Optimization: The Portfolio

Management Module (IS13) retrieves the relevant input data for each

managed building or asset and computes optimized day-ahead energy

schedules per asset, aiming to improve operational efficiency or cost-

effectiveness.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 98

Figure 49 - Sample payload for the results of IS13

 Final Results Are Stored and Returned: The Orchestrator collects the

optimized schedules from IS13, appends them under the given workflow_id,

stores them in the database, and exposes the results through a dedicated

API endpoint. The Stakeholder Platform frontend accesses and presents the

results.

5.10 S4.3 - P2P Flexibility Trading

The S4.3 – Peer-to-Peer (P2P) Trading service shares the same architectural pattern,

workflow logic, and component involvement as the S4.2 – Portfolio Management

Service. It reuses the same underlying execution flow involving IS3, IS4, IS12, and

IS13, triggered daily after the availability of flexibility and demand forecasts.

However, while the service execution pipeline remains identical, the results

produced by IS13 are post-processed to simulate a P2P trading scenario. This

includes manipulating the price signals and matching available flexibility between

participants to optimize local energy transactions. As such, the reader is referred to

to the S4.2 description while noting that S4.3 extends the output logic to include

prosumer-prosumer exchanges and trade-based optimization.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 99

5.11 S5 - Grid Investment Planning

This section describes a complete execution of a G2B service triggered on-demand

by the user. The service selected is Grid Investment Planning, implemented in the

first version using IS containers and the full-Service Layer stack. The workflow

leverages all core components (API Gateway, Orchestrator, Kafka Broker, and

multiple ISs) to coordinate a multi-step energy and financial analysis flow, returning

results to the user and storing them for future reference.

The high-level Use Case for this service can be found in Table 22:

Table 22 - Grid Investment Planning

Service Name S5 Grid Investment Planning
Type G2B
Architectural Pattern On-demand
Actors Involved Main Actor: Grid Operator (TSO/DSO)

Secondary Actor: -
Brief Description 1. The Grid Operator logs in the EVELIXIA platform and

enters the Grid Investment Planning service.
2. They are asked to insert a set of information that will

initiate the analysis. More specific they are asked to
insert a set of scenarios and interventions that will be
analyzed and compared by the platform, along with a
set of transition goals.

3. The inserted information is forwarder to the Multi-
Vector Grids Energy Modelling & Simulation (IS15)
component, to perform the power flow simulations of
the inserted scenarios and calculate a set of energy
related KPIs.

4. The results are forwarded to the Grid Investment
Planning (IS 11) component to perform a cost benefit
analysis and sensitivity analysis generates a report.

5. The generated report is stored to the platform and
forwarded to the end-user.

Assumptions and
Pre-conditions

 The grid has to be initialized in the EVELIXIA platform. If
not, the engineer has to do the initialization before
proceeding to examining the interventions.

 The engineer should have a set of upgrade scenarios
that wants to investigate and compare.

Trigger  The Grid Operator (TSO/ DSO) requests to use the Grid
Investment Planning service.

Goal  The Grid Operator (TSO/ DSO) gets a report with the Grid
Investment Planning analysis.

Pre-Conditions (UCs)  None.
Post-Conditions (UCs)  None.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 100

For the purposes of this deliverable and to stay within its scope, the following

assumptions were made:

 Since the integration between the Service Layer and Middleware will be

implemented in T5.1, we consider that the District Digital Twin (IS15) has been

initialized previously with the required grid topology and static metadata

from the Pilot Site. The initial Pilot Site for this current execution is the Greek

Pilot Site (PS5).

 The user initiates the analysis by choosing one of the pre-defined scenarios

for investment and inputting objective and scope parameters through the

Stakeholder Platform and hitting “Run”.

The involved components are:

 Stakeholder Platform (User Input / UI)

 API Gateway

 Orchestration Layer

 Message Broker

 IS15: Multi-Vector Grids Energy Modelling & Simulation

 IS11: Grid Investment Planning Assistant (GIPA)

 Service Layer Database

Figure 50 illustrates the cross-functional flowchart of the service’s workflow:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 101

Figure 50 - Grid Investment Planning Workflow

1. User Sends Service Request with Parameters: A DSO/TSO operator logs

into the Stakeholder Platform, selects the Grid Investment Planning tool,

and inputs:

 One or more scenario IDs

 Financial expenditures

 Constraints or priorities (optional)

2. Request Forwarded via API Gateway

 The HTTP POST request is sent to:

/api/service/execute/grid_investment_planning.

 It is routed internally to the orchestrator for processing.

3. Orchestrator Generates Workflow ID and Publishes Trigger

 A workflow_id is generated.

 User inputs and metadata are saved in MongoDB.

 The orchestrator publishes a message to the trigger topic gr1.S5.trigger,

combining user inputs with relevant grid metadata.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 102

Figure 51 - Sample trigger payload for S5

4. IS15 Consumes Trigger and Produces Energy KPIs

 IS15 (Multi-Vector Grid Simulation) retrieves the user scenario, loads the

grid model, and runs a simulation.

 Energy KPIs are computed and published to gr1.IS15.output.

Figure 52 - Sample payload of the IS15 results for S5

5. IS11 Consumes IS15 Output and Runs CBA

 IS11 (Grid Investment Planning Assistant) subscribes to the output of IS15.

 It uses the energy KPIs and scenario metadata to run cost-benefit and

sensitivity analyses.

 Final results are published to gr1.IS11.output.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 103

Figure 53 - Sample payload for the IS11 results

6. Orchestrator Collects Final Outputs and Stores

 Orchestrator waits for outputs from both IS15 and IS11.

 Final structured results are compiled and stored in the database under

the workflow_id.

7. Frontend Presents Results

 When the user queries for results, the system returns:

 Energy KPIs (IS15)

 Financial KPIs (IS11)

 Recommendation summary (if applicable)

5.12 S6 - Grid Maintenance

This section describes a complete execution of a G2B service triggered on-demand

by the user. The service selected is Grid Maintenance, implemented in the first

version using IS containers and the full-Service Layer stack. The workflow leverages

all core components (API Gateway, Orchestrator, Kafka Broker, and multiple ISs) to

coordinate a multi-step energy and financial analysis flow, returning results to the

user and storing them for future reference.

The high-level Use Case for this service can be found in Table 23:

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 104

Table 23: Grid Infrastructure Maintenance

Service Name S6 Grid Infrastructure Maintenance
Type G2B
Architectural
Pattern

Scheduled / On-Demand

Actors Involved Main Actor: Aggregator / Grid Operator (DSO/ TSO)
Secondary Actor:

Brief Description 1. Every first day of the month at 00:00, this service is
automatically triggered, by requesting new IoT Building &
Grid Asset Data from the Middleware.

2. The request is forwarded to the Multi-Vector Grids Energy
Modelling & Simulation (IS15) to produce a grid-level
equipment simulation analysis.

3. Smart Grid Maintenance (IS14) receives the needed data to
perform assessment of the health/degradation levels of
multi-grid related assets (e.g., BESS, MV/LV substations, PVs,
HPs, power lines) when connected to electrical networks
(main energy carrier), based on black-box data driven
models (predictive maintenance and infrastructure ageing
models) and co-optimization of the outage scheduling of
grid assets with buildings’ DERs’ generation.

4. The Smart Grid Maintenance (IS14) performs an
optimization algorithm and generates the maintenance
planning of the grid assets based on the state of health of the
various grid equipment. The report is a grid maintenance
schedule .

5. The generated report is stored to the platform and
forwarded to the end-user.

Assumptions and
Pre-conditions

 The grid infrastructure must be equipped with sensors to
monitor their health status and be interconnected to the
EVELIXIA platform.

Trigger  Monthly Schedule
 User request (alternative flow)

Goal  Report generation of a grid maintenance schedule for the
Aggregator/Grid Operator (TSO/DSO)

Pre-Conditions (UCs)  None.
Post-Conditions
(UCs)

 None.

For the purposes of this deliverable and to stay within its scope, the following

assumptions were made:

 Since the integration between the Service Layer and Middleware will be

implemented in T5.1, we consider that the District Digital Twin (IS15) has been

initialized previously with the required grid topology and static metadata

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 105

from the Pilot Site. The initial Pilot Site for this current execution is the Greek

Pilot Site (PS5).

 The user does not need to initiate the analysis through the Stakeholder

Platform since this is a scheduled workflow that will begin automatically at

a scheduled time (00:00). We have chosen this time in order to produce a

monthly maintenance schedule.

 The service can also be requested on-demand, but in this section we will only

present the scheduled version.

The involved components are:

 Stakeholder Platform (User Input / UI)

 API Gateway

 Middleware (test stream)

 Orchestration Layer

 Message Broker

 IS15: Multi-Vector Grids Energy Modelling & Simulation

 IS14: Smart Grid Maintenance

 Service Layer Database

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 106

Figure 54 illustrates the cross-functional flowchart of the service’s workflow:

Figure 54 - Grid Maintenance Workflow (scheduled version)

1. Scheduled Trigger (00:00): At the start of each month, the orchestrator

schedules the execution of the grid maintenance workflow and generates a

new workflow_id.

2. Middleware Data Request: The orchestrator sends a request to the

Middleware to retrieve the latest IoT building and grid data (e.g., health and

operational parameters of grid assets).

3. Data Delivery to Broker: The Middleware provides the requested building

and grid data and publishes it to the shared Kafka topic:

gr1.middleware.iot

4. IS15 Simulation Initiation: The Multi-Vector Grid Modelling component (IS15)

is triggered by the newly published IoT data and executes grid-level

simulations based on the current state.

5. IS15 Publishes Grid Simulation Output: IS15 publishes its simulated grid

analysis results (voltage profiles, system status etc.) to:

gr1.IS15.output

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 107

Figure 55 - Sample payload for the outputs of IS15 for S6

6. IS14 Maintenance Assessment Execution: Smart Grid Maintenance (IS14) is

triggered by IS15’s outputs. It applies its predictive maintenance and

optimization algorithm to assess equipment degradation and propose

maintenance schedules.

7. IS14 Publishes Maintenance Schedule: IS14 outputs health assessments

and suggested maintenance tasks (e.g., inspection of BESS or line

replacements) to: gr1.IS14.output

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 108

Figure 56 - Sample payload for the results of IS14

8. Results Aggregation by Orchestrator: The orchestrator listens to the IS15

and IS14 output topics, gathers the final results, and aggregates them under

the same workflow_id. These are stored in the Service Database.

9. Results Exposure & Delivery: The results are exposed through the

/api/service/results/:workflow_id endpoint and retrieved via the Stakeholder

Platform for visualization and review by the user.

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 109

6 NEXT STEPS

With the MVP implementation of the EVELIXIA Service Layer successfully

implemented and tested in a centralized containerized environment, the next

phase of the project will focus on scaling, enriching, and deploying the system

using real pilot contexts. These steps aim to validate the architecture in live

conditions and progressively evolve the platform into a fully operational backbone

for G2B and B2G energy services.

We will explore the transition into per-pilot instances of the Service Layer,

maintaining the same architecture and technology stack but with pilot-specific

configurations. Each instance could include local building and grid data, site-

specific Innovative Solutions (IS), and customized orchestration logic.

To facilitate this, packaging of the Service Layer into reproducible deployments

(e.g., Docker Compose bundles) will be performed, allowing deployment either on-

premise or on cloud infrastructure. While the MVP used a single Kafka and

MongoDB instance, we will assess whether horizontal scaling (e.g., separate Kafka

topics per pilot, or Mongo sharding) is required to support high-frequency data

flows across multiple pilot sites.

The MVP demonstrated integration with two representative Services. The next step

is to integrate the remaining Innovative Solutions defined across the 6 services

described in D1.7. Each new IS will require:

 Kafka topic definition (output and optional intermediate topics)

 Configuration of its environment (input/output topics, services, and

parameters)

 Integration into orchestrator’s workflow logic via updated YAML descriptors

The Middleware Layer developed in parallel work packages will be integrated to

replace synthetic or dummy data sources. This includes:

 Subscribing to real-time data (e.g., building sensors, energy meters)

 Dispatching actuation signals to Pilot Infrastructure in the Field Layer

Before public deployment, security must be strengthened:

 API Gateway will be secured via HTTPS

 Role-based access control will be applied per service and user role

 Kafka topics and MongoDB collections will be fully segregated per pilot to

ensure data isolation

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 110

Although identity federation is out of scope for this task, proper token-based

authorization and service identity handling will be enforced to prevent

unauthorized access.

To ensure readiness for live pilots:

 Kafka consumer groups will be leveraged to parallelize heavy IS

computations

 MongoDB indexing will be optimized for performance queries (by pilot ID,

timestamp)

 Logging and monitoring tools (e.g., Grafana, Prometheus) will be configured

for observability

Where necessary, multi-instance orchestration or Kafka clustering may be

explored. Health checks and retry mechanisms will be validated under stress

testing.

As more IS modules are chained together, complex workflows involving multiple

decision points will emerge. This includes services that rely on outputs of several

IS tools or require conditional execution. Orchestrator logic will be expanded to

support multi-branch workflows, timeout handling and composite service

orchestration

EVELIXIA – D4.7 Integrated B2G and G2B Services Layer and Orchestration v1 111

7 CONCLUSION

This document has provided a comprehensive summary of the EVELIXIA Service

Layer, detailing its design rationale, core components, and implementation

strategy through a functional Minimum Viable Product (MVP). The Service Layer

has been developed as the central backend system that coordinates the execution

of energy-related services across the platform, supporting both Building-to-Grid

(B2G) and Grid-to-Building (G2B) interactions.

By adopting a modular and event-driven architecture, the Service Layer integrates

heterogeneous Innovative Solutions (IS) and manages the communication

between them through a message broker. Its architecture comprises key

components including the Message Brokerage System, Orchestration Layer, API

Gateway, and Service Database. Each of these components plays a distinct role in

enabling automated, scalable, and decoupled service execution.

The MVP implementation demonstrated that this architecture can be reliably

executed using containerized technologies, specifically Docker Compose, Kafka,

MongoDB, and services. Two representative workflows were implemented: one on-

demand workflow for Grid Network Maintenance and one continuous workflow for

Daily Building Optimization. These examples validated the orchestrator’s ability to

manage Kafka topics, initiate service logic, collect results, and deliver outputs to

both users and downstream systems.

This MVP validates that the core service logic, topic routing, workflow triggering,

and output persistence operate as intended in a controlled test environment. It also

establishes a strong baseline for the upcoming pilot phase deployments, where the

system will interact with real-world data sources, physical infrastructure, and user

interfaces.

In the next stages of the project, the Service Layer will be expanded to include the

full set of EVELIXIA services, scaled for multiple pilot sites, and integrated with

external systems via the Interoperability Layer. The platform will continue to evolve

in response to real-world usage, ultimately ensuring that the Service Layer delivers

on its role as the operational core of an interactive, efficient, and flexible energy

ecosystem.

