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EXECUTIVE SUMMARY

This deliverable consolidates the technical developments and achievements of
Tasks 4.1 and 4.2 within the EVELIXIA project. As the first version of D4.2, it
integrates advancements in building situation awareness, forecasting, and
autonomous decision-making mechanisms at the building level. These
developments aim to enhance building-to-grid interaction through digital twin
technologies and advanced decision-support systems.

The activities under Task 4.1 focus on creating the Building Awareness and
Forecasting Toolbox, a comprehensive platform that integrates a state-of-the-art
simulation engine, real-time sensory data, and hybrid models to enable advanced
forecasting and situation assessment. Key components include indoor air quality
monitoring, demand forecasting, flexibility prediction, and simulation-based
building energy modelling. The outcome is a multi-dimensional digital tool
capable of assessing several building vectors and dimensions, serving as a virtual
testbed for validating various control scenarios.

Under Task 4.2, the Autonomous Building Decision Support Toolbox has been
developed to provide stakeholders with actionable insights for energy
optimization, demand planning, and investment evaluation. Leveraging the
simulation capabilities of the Building Digital Twin resulted from Task 4.1, this task
integrates innovative approaches such as reinforcement learning, multi-timescale
model predictive control, and ensemble decision-tree models. These methods
support services such as day-ahead demand planning, real-time load control, and
investment planning, rendering the digital twin autonomous in its decision-
making capabilities.

The deliverable also details the individual service implementations (IS1-1IS7 and
IS9-1S10), including their current initial version towards achieving the described
goals. These services address critical aspects such as:

Indoor Air Quality Monitoring (IS1): Energy costs optimization while ensuring
acceptable indoor environmental conditions (CO, and temperature) taking into
account occupant’s window-opening behaviour.

Energy Assets Maintenance (IS2): Maintenance scheduling and failure
anticipation for the battery cooling system, from the chiller to the emitters,
including the room containing the batteries (IS2-1). Detection of limescale
deposits in hot water tanks, whether equipped with electrical heaters or heat
exchangers (I1S2-2).

Monitoring and forecasting of battery state-of-health and remaining life of the
battery providing (1S2-3).

Demand Forecasting (IS3): Prediction of electricity, heating and gas networks
consumption and production especially for non-dispatchable plants.

Flexibility Forecasting (I1S4): The service will be used for proactively assessing and
forecasting the levels of demand flexibility — focusing on both thermal and
electricity demand - at the building level.

Building Energy Modelling and Simulation (IS5): The simulation engine
(modelled multi-vector energy digital twin) uses real-time data and BIM to create
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hybrid digital twins, combining physics-based and data-driven models for
scalable energy and performance analysis across buildings.

Building Investment Planning Assistant (1S6): Performs real-time LCA and LCC
analyses, optimizing CAPEX, OPEX, and environmental benefits to support
strategic energy investments and grid decongestion.

SRI Advisor (IS7): Offers tailored recommendations to improve SRI scores,
analyzing upgrades and flexibility scenarios for cost-effective energy efficiency
and comfort enhancements.

Proactive Demand Planning (IS9): This service reshapes day-ahead demand
using episodic reinforcement learning and cost-benefit matrices, enabling energy
cost savings without compromising efficiency.

Continuous Energy Performance Management (IS10): Real-time operational
control to optimize energy supply-demand matching and grid stability. 1S10b is
dedicated to control the buildings HVAC systems with the constraint of ensuring
the thermal comfort.

The outcomes of this deliverable demonstrate potential for replication across
various building types and operational scenarios. The generalization of models,
coupled with advanced simulation and data-driven methods, ensures adaptability
and scalability. While case-specific customizations are necessary for factors such
as climate conditions, building systems and stakeholder needs, the
methodologies and tools are broadly applicable.

The barriers encountered include data integration challenges, service
interconnections, and operational variability. Requirements for implementation
include access to real-time data, computational resources for simulation and
decision support, and stakeholder engagement to ensure adoption. The primary
channels to promote these solutions include technical workshops, policy advisory
groups, and publications in scientific and industry forums.

By addressing key European goals in energy efficiency, sustainability, and smart
grid integration, this deliverable sets the foundation for innovative and
autonomous building management solutions with important potential for real-
world impact.
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1. INTRODUCTION AND OBJECTIVES

1.1. Scope and objectives

This deliverable, D4.1, is part of Work Package 4 (WP4) within the EVELIXIA
project, consolidating the initial developments under Tasks 4.1 and 4.2. As the first
version of Autonomous Building Digital Twins report, D4.1 provides an alpha-stage
framework for building-level situation awareness, forecasting, and autonomous
decision-making mechanisms. It establishes the foundation for subsequent
iterations and refinements, culminating in D42 (final-updated version). An
overview diagram placing Tasks 4.1 and 4.2 within the EVELIXIA project is
depicted in Figure 1.

The scope of D41 is focused on conceptual design and early technical
developments of the tools and methodologies needed to enhance building-to-
grid interactions. This includes the development of initial algorithms, simulation
models, and service architectures for energy forecasting, flexibility assessment,
and decision support at the building level. While implementation and real-time
data integration are planned for future stages, this version prioritizes establishing
theoretical underpinnings and defining technical requirements alongside with
initial stages of results.

The objectives of D4.1 are to:

e Lay the groundwork for the Building Awareness and Forecasting Toolbox
(Task 4.1) by creating initial models, simulation engine and methodologies
for energy performance assessment, air quality monitoring, and demand
forecasting.

e Define the architectural and methodological framework for the
Autonomous Building Decision Support Toolbox (Task 4.2), focusing on
decision-support strategies such as demand planning and energy cost-
benefit evaluation.

These early developments set the stage for future validation and implementation
phases, aligning with EVELIXIA's long-term objectives of energy efficiency, grid
flexibility, and smart building integration.

N
Sensor measurements

WP3 TVEUXIA
PLATFORM AND

Bullding Level APl

TS EVELIXIA's Network

Awareness and
Foretusting Tookiox

~ Userweb-based GUI

N District Level 4 TAS EVELA'S
Stokuboldas nteraction

Datform

w—p  Means "through Broker”

Figure 1. Overview Diagram

EVELIXIA — D4.1 Autonomous Building Digital Twins 1
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1.2. Structure

The structure of this deliverable reflects its alpha-stage focus, emphasizing the
theoretical and conceptual foundations for the tools and methodologies to be
developed in Tasks 4.1 and 4.2. The report is organized as follows:

¢ Introduction and Objectives: Provides the context, scope and objectives of
D4.1 along with its alignment with project goals.

e EVELIXIA'S Building Awareness and Forecasting Toolbox: Outlines the
technical framework of the alpha-stage version of the involved services in
Task 4.1 (IS1-1S5),including their targeted functionality and roles within the
project framework.

e EVELIXIA'S Autonomous Building Decision Support Toolbox: Outlines
the technical framework of the alpha-stage version of the involved services
in Task 4.2 (IS6-1S7 and 1S9-1S10), including their targeted functionality and
roles within the project framework.

e Conclusions: Summarizes the acquired knowledge while also the planned
activities for future iterations, focusing on the transition from conceptual
models to implementation and validation in D4.2.

1.3. Relation to Other Task and Deliverables

D4.1 is directly linked to Tasks 4.1 and 4.2 under WP4, serving as the initial version
that consolidates early developments and frameworks for the Building Awareness
and Forecasting Toolbox and the Autonomous Building Decision Support Toolbox.
Task 4.1 focuses on the conceptual design of tools for energy modelling, demand
forecasting, and flexibility assessment. These outputs form the basis for Task 4.2,
which extends the toolbox to include decision-support mechanisms. Both tasks
offer the Building-level structure of EVELIXIA's project.

This deliverable is pivotal for guiding future project activities, as it defines the
technical requirements and architecture for subsequent iterations. While D4.1
does not yet include real-time data or implementation but instead provides a
foundation for these aspects to be integrated in D4.2. The outcomes of D4.1 will
inform further developments across WP4 and other work packages, ensuring
alignment with the EVELIXIA project’s broader objectives.

Additionally, D4.1 sets the stage for collaboration and knowledge sharing among
project partners, facilitating the transition to the next validation and
implementation phases. The deliverable represents a first step toward achieving
the established goals of WP4, contributing to a cohesive and scalable framework
for building-to-grid interactions.
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2. EVELIXIA’S BUILDING AWARENESS AND FORECASTING
TOOLBOX

2.1. Introduction

EVELIXIA's Building Awareness and Forecasting Framework (BAFF), developed
under Task 4.1, serves as a key component within the Innovation Pathway 1
(IP1):Building-to-Grid (B2G) Services, aiming to enhance the interaction between
buildings and the energy grid. The BAFF is designed to provide a comprehensive
suite of services that enable detailed building energy profiling, advanced
forecasting capabilities, and improved situational awareness. By integrating real-
time data from building sensors, static information (such as BIM data), and
external environmental parameters, the BAFF supports the development of
Autonomous Building Digital Twins (ABDT) that accurately reflect building
operations and energy behaviour.

The toolbox operates in synergy with the Autonomous Building Decision
Support Framework (ABDSF), enabling intelligent, model-based and data-driven
decision-making that aligns with occupant preferences, operational
requirements, and grid demands. Together, BAFF and ABDSF form the backbone
of EVELIXIA's strategy to transform buildings into Buildings as Active Utility
Nodes (BAUNs)—dynamic, responsive entities capable of participating in energy
markets, optimizing consumption, and enhancing grid stability.

Task 4.1 focuses on the development, integration, and demonstration of five
Innovative Solutions (ISs)within the BAFF. Each solution targets a distinct aspect
of building energy awareness and forecasting:

e IS1 - Indoor Air Quality (IAQ) Service:Optimizes energy costs while
ensuring acceptableindoor environmental conditions (CO,, humidity,
temperature) taking into accountoccupant'swindow-opening behaviour.

e IS2 - Energy Assets Maintenance: Evaluates operational performance,
equipment health, and battery aging to schedule timely maintenance and
to optimize microgrid-connected assets.

e IS3 - Local Energy Consumption and Generation Forecasting: Provides
predictive analytics for electricity, heating, and gas loads at both building
and district scales.

e IS4 - Thermal and Electricity Flexibility Forecasting: Assesses the
flexibility potential of shiftable loads, supporting demand response and
grid-interactive operations.

e IS5 - Building Energy Modelling and Simulation: Utilizes physics-based
and data-driven models to develop hybrid digital twins, enabling energy
performance simulations, demand flexibility analysis, and seamless
integration with other EVELIXIA services.

Each of these ISs is described in detail in the following subchapters, outlining their
objectives, methodologies, current results and next steps.
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2.2. Indoor Air Quality forecast (IS1)

The current innovative solution so-called IS1 is an original tool developed by the
CEA through the EVELIXIA project. The IST developed by CEA intends to forecast
the CO, concentration in the building for the near future, taking into account a
realistic window-opening behaviour of occupants using a machine learning
approach, while respecting the thermal comfort and minimizing the energy costs.
The IS1 can also be used to provide flexibility by reducing the ventilation rate.

2.2.1.Objectives

Indoor Air Quality as IAQ has been a major concern in buildings for decades with
the emergence of the Sick Building Syndrome (SBS). However, IAQ is also strongly
correlated with the energy bill, and the earliest B+ or Net-Zero buildings led to a
drop in IAQ levels due to over-tightness and poor air change. This ambiguity raises
the problem of how to reduce the energy consumption while ensuring the
thermal comfort and air quality in the context of global warming.

As part of the EVELIXIA project, CEA is developing a predictive IAQ model. In this
innovative solution IS1, the main challenge is to anticipate the occupants’
behaviour in terms of window opening in response to weather and indoor
conditions, among other factors. The aim is to offer flexibility based on heating,
ventilation and air conditioning (HVAC) systems and to enable better optimization
with an energy management system (EMS), for example the innovative IS10b
solution developed in the same project.

2.2.2. Methodology

CEA is developing a predictive IAQ model in Python. The model encompasses four
different items:

e A predictive window-opening model based on a Machine Learning
approach and on the scikitlearn library in Python. This predictive model
aims to emulate the window-opening behaviour over a short time-horizon
(a few days). The window-opening model is based on a Logistic Regression
approach. It is trained repetitively with historical data from the field to be
adapted to the season and occupant changes, before coupling with the
Mixed Integer Linear Programming (MILP)optimization model (see Figure
2).

e A building model dedicated to estimate the air change across the
building when the windows are opened and the indoor air temperature as
function of the window-opening scenario. A first step is to identify the
thermal features of the building when the openings are closed and the
rated mechanical ventilation is running. The building model can be either a
simple model based on an electric analogy, also called RC-type model
developed in Python or Matlab (see in section 3.5.2), or a DTS model such as
the Building VE supported by the IS5 “Building Energy Modelling and
Simulation” within the project.

e A model is implemented to calculate the indoor CO, exposure
depending on the CO; sources from outdoors and indoors, the occupancy
schedule and the air change ratio (mechanical and natural).
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e At last, an optimization model, Mixed-Integer Linear Programming
(MILP), to enable minimizing a cost function depending on IAQ including
indoor CO.exposure, thermal discomfort, as well as the energy cost. This
tool is intended to draw the trajectory of a window-opening schedule
consistent with occupants' behaviour and the energy consumption
throughout the HVAC systems. The predictive trajectory will be planned
regularly over the horizon time of two or three days. This sub-model
embeds two other programs as follows: the RC-type building model also
calibrated on thermal features and air change rate, the CO, predictive
model. It is coupled to the window-opening model trained previously.

Dynamic data

"= —— ==

- Thermal feat. +
Building .
odel 4 Air change rate
mode Identification 1AQ
M v
/'\ [ v /\ L 4
[ A V|| co,inside
Indoor Co, 2
Temperature estimation [ &XPOSUre
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Figure 2. IS1 work flow

The training data necessary for the machine learning methodology comprises
explanatory variables such as outdoor temperature, rainfall, wind speed and
direction, indoor temperature, indoor relative humidity, indoor CO2 exposure,
without any order of importance. In parallel, the following variables set the
contextual: window state (opening or closed), window orientation, movement
detection sensed to represent the occupancy, considered office, season, time of
the day. The time step for calibrating the window-opening behaviour is 10
minutes maximum. The predicted variable may be either the window state (open
or closed) or the action (opening or closing the window), deduced from the same
explanatory window state variable. Obviously, the training data for both of these
problems suffer from an imbalanced amount of data between each position or
action. CEA is testing “class_weight" and “under sampling” solutions to fix this
recurrent issue in machine learning methodology. CEA continues fine-tunning
the model to improve the window-opening behaviour predictions. CEA also
intends to go more in depth using the “ShuffleSplit" and “cross_val_predict” tools.

The building model could be a RC type model 5R1C for 5 resistances + 1 heat
capacity (see in section 3.5.2) or a DTS model. It will be featured with the static
data defined in the standard ISO 13790:2008, such as the conditioned floor area,
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the total area that is the addition of all surfaces (walls and floors) facing the
building zone considered, the effective mass area, the heat capacity class of the
building, ceiling height. All the data needed to create the DTS model is expected
to be found in the IS16 “Digital Building Logbook”. The building model will be used
to identify at a first step, the thermal characteristics of the building or office, in
particular the heat transfer coefficients of the model. This calibration requires to
feed the model with historical data as time series: solar heat gain based on the
effective collecting areas of the building under consideration and corrections due
to solar shading caused by the surrounding masks, internal heat gain due to
activity inside the building, outdoor dry air temperature and supply air
temperature if an energy recovering system exists, the mechanical ventilation
rate across the building, indoor temperature setpoints for each time step, energy
consumption, the occupancy and CO2 flow rate from hypothetic sources.
Calibration of the building’s thermal behaviour must be carried out using data
from periods when all windows are closed.

At a second stage, the model will be reversed to estimate its ventilation-related
heat transfer coefficient, and thus the air change rate, according to the thermal
characteristics identified at the previous stage and to the variation of indoor air
temperature. The building's air change rate must be identified when several
windows are open. Consequently, the building model can be configured to
predict the indoor air temperature and natural ventilation rate for the near future.
An alternative to this method might be to calculate the air change rate based on
historical data showing drops of CO2 concentration when windows are open. It
might be more accurate but requires the considered rooms, offices to be
equipped with CO2 sensors. Then, the optimization model set up with the
aforementioned identified parameters can run, coupled to the window-opening
model, to determine the indoor air temperature time series obtained with realistic
window-opening behavior, and thus minimize the objective function such as the
sum of energy costs, discomfort costs and CO2 exposure costs by leveraging
temperature and CO2 difference potentials from the outside. The building energy
consumption variable enables to solve this optimization problem, such as for the
EMS described in section 3.5.2 (see IS10b).

Afterwards, the estimated air change rate is sent, during the window opening-
periods to the brick model calculating the predictive CO2 concentration in the
rooms. The calculation of indoor CO2 exposure is deduced from the general
formula:

dC Qe+ Qi (Ce X Qe + Qi)
- - XC—-—— =

dt %4 |4 0

where: Ce is the pollutant concentration of the air ventilated across the volume V
with the flow rate Qe, Qi is the indoor pollutant source flow rate and C is the
pollutant concentration into the volume V at each time step t.

Dynamic data are necessary to initialize the various calibration steps and to detect
any deviations by comparison with the results of the predictive IAQ model.

This predictive IAQ model will allow for the possibility of shutting down the
building ventilation system in the near time horizon in compliance with the
thermal comfort and IAQ.
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2.2.3. Evaluation & Results

The predictive window-opening model in development has been trained with
historical data measured in the so-called HELIOS, CEA office building, located in
Le Bourget-du-lac (F-Savoie) and cooled by cross-ventilation. The data set used for
the machine learning predictive window-opening model covers the year 2022.
After training the machine learning model on all this period, CEA tested to split
the year 2022 into different seasons, with best results in particular for mid-season
periods.

## TODO: SELECT THE PERIOD (date start and date end) OF THE YEAR TO FEED THE MODEL
dstart = datetime(2022, 3, 21)

dend = datetime(2022, 6, 21)

dfc = dfc[(dfc.index >= dstart) & (dfc.index < dend)]

CEA also addresses the time of day as a factor that influences window opening.

dfc['DAYTIME'] = dfc['DAYTIME'].where(~dfc.index.hour.isin([19, 20, 22, 23, 0, 1, 2, 3,
4,5, 6]), 'Out')

dfc['DAYTIME' = dfc[' DAYTIME'.where(~dfc.index.hour.isin([7, 8, 9, 10, 11, 12, 13, 14,
15,16,17,18]), 'In')

This parameter can be fine-tuned according to the type of occupant (residential
or office buildings). It also allows to filter the data by considering only the period
when the building is assumed to be occupied, in case of a lack of occupancy
information. CEA has been continuously monitoring its offices for many years. At
this stage, CEA used real data from three offices among its premises.

## TODO: SELECTION OF OFFICES TO BE INVESTIGATED AMONG '3033'(CLIMATISE),
3071'(ATRIUM), 3072, '3105'

N_office = ['3071', '3072', '3105]

Various sets of training data have been tested. The explanatory factors used in this
approach are as follows without any order of importance (see the results below):
outdoor temperature, indoor air temperature, wind speed, rainfalls, time of the
day and office reflecting both the occupant behaviour and the exposure of the
office. The last two are contextual categories, while the predicting variable is the
window status.

# [[CO2 AMBIANT', 'DIRECTION DU VENT', 'T AMBIANTE', 'T EXTERIEURE', 'VITESSE DU VENT,
# 'PLUIE', 'RAINFALL', 'RAINS', 'INFO PORTE OUVERTE', 'SEASON', 'DAYTIME', 'OFFICE#']
dfcc = dfce.drop(columns = [[CO2 AMBIANT', 'DIRECTION DU VENT', 'PLUIE', 'RAINS',

'INFO PORTE OUVERTE', 'SEASON'])
In [59]: y.name
Out[59]: 'INFO FENETRE OUVERTE!
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CEA set a “class_weight” attribute to alleviate the imbalanced window states

problem.
# log_reg = LogisticRegression(class_weight = 'balanced', random_state = O).fit(X_train_scaled,
y_train)

log_reg = LogisticRegression(class_weight = {0:1, 1:2}, random_state = 0).fit(X_train_scaled,
y_train)

It is relevant to notice that the prediction results are more accurate with the
class_weight ratio (= 2), rather than with the close-to-open ratio (> 5) calculated
from the imbalanced field of data.

In order to assess the efficiency of the machine learning model, CEA calculates
the following indicators:

e The real ratio of closed status over the open status compared to the
predicted ratio on the same period by the calibrated model.

e The global score defined as the number of predicted status events fitting
the actual ones, for the training data only, the data for testing the model
and for the whole period, also called primary test period

e The flscores that give the numbers of matches for both window open and
closed status, for the training data and the data for testing the model

A logistic regression was used for this application whose coefficients are as
follows:

LogisticRegression coeff:

Index(['T AMBIANTE', 'T. EXTERIEURE', 'VITESSE DU VENT', 'RAINFALL', 'DAYTIME', 'OFFICE#'],
dtype='object):

[-0.67434053 1.26866081 -0.09063199 -0.07607217 0.35091588 -0.81611395]

This result shows that the parameters that most influence the window-opening
behaviour are, in decreasing order of importance, outdoor temperature, office
category and indoor temperature, respectively with a positive and negative
influence for the last two on the window opening status. It is important to note
that the “office category” parameter of influence includes the occupant's
sensibility and behaviour, as well as the thermal features and orientation of the
occupied office. The wind speed, the rainfalls and the time of day look less decisive
factors. However, there is a bias due to the indoor temperature and the data
management. The training data explored tend to force the predictive model to
learn situations regardless of occupancy. The absence of occupancy information
in the training dataset does not rule out situations where the indoor temperature
rises due to the inability to manipulate windows in the absence of occupants for
varying periods of time. This misleads machine learning.
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ratio of closed to open - actual states:
0.6825396825396826

scores for train period :
0.7296175220660347

scores for test period :
0.7307792887029289

scores for primary test period :
0.7298498875464198

ratio of closed to open - simulated states:
0.607843137254902

flscores for train period %C, %O :
[0.79052805 0.61876008]

flscores for test period %C, %O:
[0.79174674 0.61933814]

flscores for primary test period %C, %O:

[0.7907721 0.61887544]

Obviously, all the attempts carried out to train the predictive model entailed to
better prognosis for closing status rather than for window opening status, due to
the imbalanced question that is raised.

In this case, it is noticeable that the predictive model tends to overestimate
slightly the opening status. Figure 3 presents the gap between the window-
opening real status versus predicted (simulated) status. As some literature
references emphasize( [1]; [2]), our predictive window-opening tends to
overestimate the status of opening compared to the measured reality. The over-
prediction is visible in the next figures and raises the question of how to account
for vacancy during the summer period.
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Figure 3.Confusion matrix using Logistic Regression

Figure 3 shows several discrepancies between the predicted window-opening
status and the real ones.
CEA carried out different tests to train the model:

e |ogistic regression

e Decision tree

e Random forest
CEA also performed several ways to set the training data and to split it, as shuffle
and cross validation Kfold. The Random Forest approach for a single office 3072’
and on the same season produced some fairly valuable results. By considering the
traditional or activity-related vacancy periods and also by transposing the results
to a macro-level granulometry to focus on opening predictions of a sufficient
duration (it could be more than one hour), it seems possible to obtain a useful
digital tool.

## TODO: SELECTION OF OFFICES TO BE INVESTIGATED AMONG '3033'(CLIMATISE),
'3071'(ATRIUM), 3072, '3105'

N_office = [3072']

rand_for = RandomForestClassifier(max_depth=4, random_state=0, class_weight={0:1, 1:2}) #
liint(c_o_ratio)

In [64]: X.columns
Out[e4]:
Index([T AMBIANTE', T. EXTERIEURE', 'VITESSE DU VENT', 'RAINFALL', 'DAYTIME],

dtype='object')

In [66]: y.name

Out[66]: 'INFO FENETRE OUVERTE'
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Figure 4 below shows the roles of each explanatory variable in the window
opening prediction using the Random Forest approach.

Feature importances using MDI
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Figure 4.Feature importances using Random Forest

#Train accuracy : 0.803

Test accuracy : 0.813

ratio of closed to open - actual states:
0.7067448680351907

scores for train period :
0.803452332448725

scores for test period :
0.8133333333333334

scores for primary test period :
0.80542915424468

ratio of closed to open - simulated states:
0.6753246753246753

flscores for train period %C, %O :
[0.85775128 0.6821066 ]

flscores for test period %C, %0 :

[0.8664422 0.69010417]
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In this example, it can be noticed that the French traditional holidays at the end of
May result in an absence of window openings, whereas the model, which is fairly
effective even though it is not yet trained with occupancy data, predicts more
manipulations. The confusion matrix (Figure 5) between the true values of all the
recorded situations and the predicted with the Random Forest is as follows:

7000
CLOSED 1422 6000
” 5000
o
2
=
2 4000
L 3000
OPEN - 1058 2680
L 2000
CLOSED OPEN

Predicted label

Figure 5.Confusion matrix using Random Forest
2.2.4. Next Steps

In order to improve the accuracy of the predictive window-opening model, CEA
plans to work on another data set from the same existing office building.
Otherwise, depending on the results to be obtained within the tool
implementations at the pilot sites, CEA will endeavor to take a step forward by
considering:

e The gliding outdoor temperature in order to take into account the adaptive
comfort and therefore the occupant’s behaviour, as an influencing dynamic
parameter. This parameter will be calculated from the last few weeks and
the successive average daily outdoor temperatures.

e The day of the week, the orientation of the window in each monitored
office and the vacancy periods, as influencing contextual parameters.

e The use of indoor CO, concentration and the temperature gap between
indoors and outdoors as potential influencing factors.

e Testing the Nearest Neighbours method as an alternative to Random
Forest.

e Further development of the “ShuffleSplit” and “cross_val_predict” functions
and also the use of “under sampling” methods to improve the fit of the
predictive window-opening model

e |dentification of the coefficient accounting the ventilation heat transfer in
the building model.

e The generalization of the method for estimating the air change rate to each
office or room under consideration.

Another opportunity is to transform the predicted opening status into flexibility
potential. Considering start-up and shut-down times of the system, it could make
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sense to flag up the flexibility potential when long enough time intervals for a
stable window state are detected. For instance, it seems reasonable to consider
an opening prediction of at least 30 minutes to authorize shutdown of the
ventilation system. Finally, CEA aims to calibrate a multivariate model for each
office analyzed separately. Regular calibrations are also planned, at a frequency
yet to be defined (possibly monthly). This work is still in progress, with the
objective of establishing a distributable methodology for obtaining predictive
window opening model specifically fitted to the building under consideration.
CEA is now looking forward to testing and training the model with real data
coming from the pilot sites. A step further would be to add another component to
this digital tool, evaluating the air change rate according to the weather
conditions, and wind patterns in particular. As a last step, CEA will test the
coupling between the energy management optimization tool and the window-
opening behaviour model.

2.3. Energy Assets Maintenance(IS2)

2.3.1. Battery cooling system monitoring (1S2-1)

The current innovative solution so-called IS2-1 is an original tool developed by the
CEA through the EVELIXIA project. The 1S2-1 developed by CEA aims to anticipate
any failure of the battery cooling system and to schedule timely maintenance by
keeping a watchful eye on the entire system, from the chiller to the emitters,
including the room containing the batteries.

2.3.1.1. Objectives

The 1S2-1is designed to monitor the state-of-health of the battery cooling systems,
in particular those for battery containers that are charged to support the grid with
Frequency Containment Reserve (FCR) or Automatic Frequency Restoration
Reserve (aFRR). These services are crucial to the stability of electrical grids and
require high level of availability and reliability. More generally, it is worthwhile to
maintain a watchful eye on any battery energy storage system (BESS) that
provides flexibility to the buildings or systems it powers’ is developing an IS that
covers the entire cooling system, from the cooler to the emitters, including the
ancillaries such as pumps and fans, as well as the temperature evolution
monitoring of the battery room or container in its environment. Using its tool, CEA
endeavors to detect deviations in the temperature of the air inside the room, gaps
in the energy efficiency ratio (EER) of the chiller, and discrepancies in the energy
consumption of all the equipment involved. Using this innovative 1S2-1 solution
should help operators and owners to schedule the maintenance operations and
to anticipate critical failures.
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2.3.1.2. Methodology

The 1S2-1 solution relies on the following participating programs, developed in
Matlab coding language (see Figure 6):

e An RC-type building model for simulating the thermal behaviour of the
battery container or room housing the battery (see more details in section
3.5.2). It is necessary to identify the thermal characteristics of this model on
real data, before using the model to predict indoor air temperature
variations in the course of the numerical resolution. The calibration
operation will be reiterated continuously at a frequency yet to be defined
(monthly or seasonally).

e A chiller model based on standardized and proven data (from
manufacturers’' data sheets) and on data measurement from the field. This
model constitutes the table containing the reference efficiency values for
various temperatures at both sides of the cooler, evaporator and condenser.

e Another part of the code consists in keeping a close watch on the energy
consumption of the various items of equipment, and on any potential
deviation from expected energy flows.

The need to anticipate a maintenance operation will be triggered by one of the
following indicators. Energy consumption and cooling output are used to
calculate the EER of the chiller at each time step. The calculated value is
compared with the EER deducted from the chiller's reference efficiency table. A
difference between the calculated EER and the expected value, derived from
table interpolation, signals to the operator the need to schedule a maintenance. A
drop in the measured value relative to the expected effectiveness can result from
various causes, such as: a lack of heat transfer fluid flow in the evaporator, a lack of
refrigerant due to leakage, a fault on the compressor or on expansion valve.

The gap between the indoor air temperature calculated by the container model
(RC-type) and the actual recorded temperature is likely to reveal a malfunction in
the cooling chain, from the chiller outlet to the room housing the batteries and
inverters. Such a deviation may be caused by a lack of heat transfer fluid, cooling
transmission problems, a lack of air circulation in the container, leakage, mixing
valve issues, rotative machine failures. Other indicators such as discrepancies
between the actual energy consumed by the ancillary devices and the energy
expected according to data sheets or power-pressure-flow curves can inform the
operator of a partial or total malfunction of the rotating machines (fans and
pumMps).
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Figure 6.1S2-1 work flow

The physics or data-based models required for the IS2-1 are fed by static and
historical data provided by the pilot sites partners and by the equipment
manufacturers. The RC-type model for the battery container will be set up with
static data and calibrated with historical data on the indoor air temperature
measured on the field. See the list of data below:

Static data related to the size, the structure and the thermal features of the
40’ container available

Outdoor air temperature

Solar radiation received hour-per-hour by the individual surfaces of the
container depending on its orientation and surroundings. The time series of
solar radiation will be derived fromm meteorological data using our home-
made MATLAB program for thermal behaviour of buildings with a simple
shape like the parallelepipedic container. The weather data needed will be
retrieved from the Photovoltaic (PV) plant’'s output or from the nearest
weather station.

Energy flow supplied by the cooling system to the container inside.

Other internal loads due to the battery cells and inverters during charging
or discharging, as well as heat gains from the transformer.

Air temperatures inside the container are additional historical data needed
to identify the parameters of the container's thermal behaviour model.
Sensors must be installed in various parts of the container.

The 1S2-1 chiller model also requires static and historical data to be adapted to the
use cases on each pilot site interested in and to operate properly. The following
list of data is taken from the French pilot site, but a few less data among the
continuous data would not be prohibitive:

Static data on the chiller is available but EER for different working
conditions (evaporation and condensation temperatures) are still lacking.
This information might be provided by CIAT or failing that, CEA will train a
simulation model of the chiller based on historical data. This data-driven
model should be a Linear Regression model.
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e The historical and continuous data of the cooling system are as such:
currents on each phase, apparent, active and reactive power of the chiller
and of different groups of equipment (fans in particular), inlet and outlet
temperatures and pressures, flow rate of the heat transfer fluid. CEA is still
waiting for the conversion efficiency of inverter and of the transformer in
order to estimate the energy flow transmitted inside the container or room.

The outputs of the I1S2-1 will be to inform end-users and owners of any deviations
between measurements, performances and consumptions based on model
predictions.

2.3.1.3. Evaluation & Results

At this stage, CEA is adapting the building model to the French pilot site for the
40’ long following battery container (see Figure 7)There is not yet concrete
results to show. However, the container model, the chiller model and the program
to translate the meteorological data into solar radiations inputs are ready to
adaptation.

C
Porte métal Porte éionche

COUPE A-A

Figure 7.Section plan of the battery container (upper part)
and image of the cooling system (lower part) - French pilot site

CEA has already experienced with monitoring the Coefficient Of Performance
(COP) of heat pump systems for heat supply applications, in a similar way to the
EER to be supervised for battery energy storage cooling systems in the EVELIXIA
project Figure 8, resulting from the so-called “iIBECOME"” European project (see
https.//ibecome-project.eu/) shows the deprecation of the COP over the time,
produced by the heat pump model trained on dummy realistic data. This model is
a linear regression model based on four explanatory variables: fluid temperatures
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at the evaporator inlet and outlet, outdoor temperature and compressor power
consumption.

Eval 1 : learning and test on random datasets

model estmaton (leaming)
22} theorcal (learmng)

‘ . model estimation (tast)

! theorical (test)

Compressor efficiency
o

J

08l : . . - - :
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Figure 8.Drop in coefficient of performance of heat pump over time

- iBECOME European project
2.3.1.4. Next Steps

CEA is currently collecting the static and historical data to fine-tune the RC model
and the chiller models. The historical data and a few static data are still to be
recovered from the pilot site manager or from the chiller's manufacturer, even
though various types and a large amount of data already exist. CEA will set up the
container model according to the assets of the French pilot site in March 2025,
fine-tuning the program to build the time series of solar radiations received by the
container from the meteorological data. At the same time, CEA will also create the
cooling system model from the manufacturer's data sheet or from the historical
data collected on the field. The first tests are expected to run in the spring
2025.Another looming task is to identify the parameters that represent the
thermal characteristics of the container. This work will be carried out between
March and April 2025 and will aim at monitoring the battery cooling system on
the French pilot.

2.3.2. Limescale deposits detection in hot water tank (1S2-2)
The current innovative solution so-called 1S2-2 is an original tool developed by CEA
through the EVELIXIA project. This innovative solution is meant to detect faults

caused by limescale deposits on an electrical heating resistor or on the outside
surface of a heat exchanger or fouling inside a heat exchanger coil.
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2.3.2.1. Objectives

The idea is to detect scale formation by monitoring the heating elements
performance, rather than “seeing” the scale deposit with X-rays or such methods.
When water in the tank heats up, calcium and magnesium ions dissolved in water
precipitate by reacting with dissolved acid gases such as CO,, thus forming
calcium or magnesium carbonate. The higher the temperature, the easier the
scale formation [3].Scale accumulated on heat exchanger surfaces prevents heat
transfers between the primary fluid and the water because it acts as an insulation,
adding an extra thermal resistance. The heat exchanger efficiency is thus reduced,
leading to a slower water heat up for the same heat flux coming from the primary
side [4]. Likewise, fouling on the primary fluid side, i.e,, inside the heat exchanger,
adds a similar additional layer of insulation leading to the same decrease in
efficiency. Moreover, fouling can also create pressure drops leading to a reduced
flow rate on the primary side, which in turn hinders the heat transfer.

When scale forms on an electrical heater, the insulation shell that it creates
induces the generated heat to diffuse more hardly to the water, increasing the
peak temperature reached by the heater. This can cause the thermostat safety
threshold to trip and force the heater to shut down. It also damages the heater,
which contributes to reducing its lifetime. However, if the deposit is not thick
enough to overheat the device, it works in normal operation and the heating
power remains unchanged, since all the generated power eventually diffuses into
the water [5], [4].

Within the EVELIXIA project, 1S2-2 could be used to monitor the real-time
performances of on-site hot water tank (HWT) and plan their upcoming
maintenance. Changes of actual performance and maintenance requirements
can further be transferred to other innovative solutions such as an energy
management system (EMS) or IS10b that deals with the predictive control of the
energy loads inside the buildings. The 1S2-2 might also offer potential flexibility to
IS4 or IS10.

2.3.2.2. Methodology

The hot water storage tank model is based on the TH-BCE 2012 calculation
method. It represents a storage tank along its vertical axis, assuming longitudinal
symmetry. It can include a heat exchanger, an electric heater, or both as heating
sources, and accounts for heat losses through the tank’s walls. It is made of
several nodes, each of them defining a water layer. In practice, four nodes are
most commonly used. Figure 9 represents the HWT layout as it is modelled.
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Figure 9.Sketch of the hot water storage tank as defined in the model

A simulation consists of three main actions being hot water withdrawal, cold-
water heat-up and temperature mixing between layers. During a withdrawal, hot
water is discharged from the top to the bottom, and cold water replaces hot
water, entering from the bottom. The temperature around the heater / heat
exchanger then decreases, and if it reaches a lower threshold, the heat source
switches on. While the heat source is on, the water in the layer where it is located
heats up as:

Qheating(t) - Qloss(t)
X

Pwater- Cv,water- Vhwt

T, (t) = dt

Where Qpeqting is either the heater power for an electric heater or is calculated
from solving the HX energy balance equation for a Heat exchanger.
At each time step, when the water in the heat source layer becomes hotter than
its upper neighbor, they mix and average their temperatures, and so on for all the
layers above. This means that the model assumes perfect mixing inside the tank
at the end of each time step (one minute in our simulations).The data required to
conduct the present method are as follows. Data must be collected all along the
operation. Sensor data should be provided, as far as possible, as time series with
the shortest time step between values (ideally T minute).
Required sensor data (provided as time series):

e HWT temperature(s) (on as many locations as possible)
Electric heater instantaneous power
HWT withdrawal mass/volumetric flow rate
HX primary fluid mass flow, inlet and outlet temperatures
Cold water temperature

e Ambient air temperature
Required static data:

e Hot water tank dimensions (at least volume and height)

e HWT temperature setpoint
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If presence of an electric heating resistor, its rated power

Heat exchanger dimensions (at least height) and location inside the HWT
UAux, given by the manufacturer (if possible)

Specific heat capacity of the primary heat transfer fluid circulating in the HX

The first step of applying this method to a real HWT is to characterize it. The
parameters that need to be characterized are the heat transfer coefficients. The
losses coefficient, UAywr,.can be identified when the tank is at rest, i.e, it is not
subjected to any heating nor withdrawal. During this period, the rate of the
temperature drop is given by the heat losses coefficient. Sample measurements
during periods when the tank is at rest followed by a linear regression (or another
method such as Particle Swarm Optimization(PSO) should yield an approximation
of this coefficient. The characterization can be performed regularly (weekly, or
monthly to be defined yet) and the results averaged to obtain a more accurate
value.

Then, the scale detection is conducted as follows. For the heat exchanger, the
expected fault symptom is a reduced heat transfer between the primary fluid and
the stored water leading to lower heating power exchanged. The reduced heat
transfer must be determined during a heat-up phase achieved by the heat
exchanger only.

There are then two cases. The first option is to monitor the following data: heat
transfer fluid inlet and outlet temperatures and flow rate. Scale formation can
then be detected by monitoring the HX heat transfer coefficient, UAyx,and
comparing it to its reference value. UAyy is defined in Equation (1) where
Tiankmean 1S the mean temperature just above the HX, assumed homogeneous.

Tprimary,in - Tprimary,out

* UApx (1)

lTl ( Tprimary,in_Ttank,mean >

Tprimary,out_Ttank,mean

The primary side data give the heat flux transmitted to the stored hot water over
the time steps, Qux(t), according to Equation (2) , assuming the heat losses have
been previously characterized. T,, represents the average temperature inside the
tank.

T (tiv1) — Ty (tio1)
2*dt

Qux(t;) = rho * Cpp ¥V * + Quoss(t;) Vi € [[2; ng — 1]] (2)

Assuming Tiankmean!S apProximated by the hot water temperature measurement
of the probe that is the closest to the HX, the same data give the LMTD, Equation
(1). With enough measurement samples, plotting Qyx versus LMTD should give a
scatter plot that can be approximated by a straight line with a slope equal to UAyy,
Equation (1). A linear regression should yield the expected value.

The second option is that no primary side measurement is available and only hot
water temperature measurements exist. In this case,UAyxcannot be determined.
Instead, only the heat flux exchanged through the HX, Qyx, can be monitored. A
“day-1 measurement” of Qyx versus time for a set temperature rise is determined
and will be used as the reference value. Qyxis then calculated regularly and
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compared to the reference. Alternatively, a trend can also be analysed. Qyx = f(t)
is determined from Equation (2). This should ideally be repeated for several
temperature rises of different values in order to have multiple samples that can
be compared to future similar measurements during the scale detection phase. In
either case, monitoring a possible divergence of UAyy or Qux(t,T,,) from their
reference values should be a sign of HX degradation, and either will be used as a
first fault indicator.

For an electric heater, its heat flux transferred to the water is supposed to not be
influenced by scale in theory, since it only depends on the power supplied to
heater that does not change. Nevertheless, as the heater's temperature increases,
its electrical resistance should also increase, since resistivity depends on
temperature. This should consequently lower the power consumed by the heater,
sinceP,,,. = U?/R, where U is constant and equal to 230V. This power decrease,
although possibly small, should still be detected via measurements of supplied
electrical power. Since it is still uncertain whether this depends on the initial and
final temperature of the heat-ups or not, heat up times will instead be monitored
and associated to their corresponding initial and final heat-up temperatures in a
table. The variation of Pejec(Tinit» Trinai) ©Ver the months will then be monitored for
an electric heater, being the first indicator for an electric heater. Besides, in the
early stage of scale build-up around the heat source, a visible effect should then
be the appearance of a delay between the resistor start-up and the rise in water
temperature. This also happens in a fault-free HWT, especially for an electric
heater, since it needs to warm up itself during a transient state, but the
phenomenon should be amplified due to the scale layer acting as an extra heat
capacity between the heater and the water. This capacity needs to accumulate
heat before transmitting it to the water during a transient phase. The transient
phase duration can therefore be a second indicator, since it should increase as
limescale accumulates on the heat source surface. Figure 10 illustrates this
phenomenon.

{Heater + scale)
heat discharge Same heat losses

=~ Fault-free
measurement

\ Measurement on
scaled heater

rund -

>

Time

Figure 10. Expected temperature rises during the heater operation from the model (in
blue), a real fault-free heater (orange) and a real scaled heater (red).
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Finally, if the control thermostat is located close enough to the heat source, it
might also be influenced by the scale deposits. The scale deposits could slow
down the heat transfer from the heat source to the stored water, but not to the
control thermostat. If so, the thermostat could prematurely shut down the heat
source before the top of the tank actually attains the temperature setpoint. Once
the heat has diffused into the water, the thermostat should restart the heat
source until a next, possibly anticipated again, shutdown, and so on. Therefore, an
excessive number of heaters starts and stops should be a third indicator of heater
malfunction. This number can be compared to the model outputs that is run with
the measurements of initial temperature, withdrawal profile and static data as
inputs. The three above-mentioned indicators are calculated every day and
compared to their reference values, which are either the model output or their
values determined with historical data or during the first days of operation if no
historical data are available. In practice, scale detection will be carried out thanks
to a Matlab script that will compare the measured data (preferably previously
converted into .csv or .txt format) with the reference values, for the above-
mentioned variables. The resulting differences will be stored in a memory, and if
they are greater than a set threshold several times, then an alarm will be
triggered. The threshold still has to be defined.

2 R ™\
Reference Times
model Heat-up time series:
calibrated or UA,y
: . !J Twwer,
" Daily simu. Daily Heat power
 Fr calculation of supplied,
Nb of Starts up| | Heat-up time [ | Withdrawal
_&Shutsdown | | or UA,, profiles
Comparison of real data VS model or table:
Tiwr as g(t),
Heat-up times,
Nb of Starts up and Shuts down

Figure 11.1S2-2 work flow
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2.3.2.3. Evaluation & Results

Figure 12 presents some of the model outputs for a fault-free HWT.
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Figure 12.Model outputs for a fault-free HWT. From top to bottom, graphs show HWT
temperature at four linearly spaced heights, DHW discharge, HX supplied heat and
electric heater supplied heat

Artificial data were created with the model to test the fault detection script. The
data consist of the HWT temperatures during heat-up phases with variable heat
exchanger heat transfer coefficients (UApyx ). It is considered that four
temperatures probes are available and linearly placed along the tank’s height.
They were lightly altered with random noise and some short delay in order to
mimic real-life measurements. Additionally, it is considered here that primary-side
data are also available, in particular a time series for the HX outlet temperature.

The data is fed to the fault detection script that performs the calculation of UAyy
according the steps presented in the Methods. Figure 13 presents the resulting Qyuy
calculated according to the first step of the Method. Blue circles represent Qyy
derived from the hot water temperatures only, whereas orange crosses represent
Qx derived from the primary side data.
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Figure 13.Measured temperatures and derived Qux

Subsequently, LMTD is calculated for each sample, according to the second step
from the Methods, and a linear regression is carried out on Qyx vs LMTD for both
options. This finally yields UAyx as the slope of the resulting line.
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Figure 14.Heat flux from the heat exchanger vs LMTD for both methods
and a linear regression made on each results to derive UA,x

In this example case, measurement data were generated using Udy,y= 150 W/K.
Despite the noise introduced, the program manages to approximate the value
correctly with a 10% for the method using only hot water temperatures, and a 4%
error for the method using HX data. This confirms that having HX primary data
available will improve the detection accuracy. If this is not the case, only Qux(t)will
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be considered.This measurement (UAyx Or Qux(t)) will be stored in memory for
future comparison. Assuming that the initial measurements, on day one, gave a
value of 200 W/K, and that the threshold was defined as a loss of 20% of original
efficiency (or a loss of 40 W/K), this threshold will be triggered for the present
measurement. If this value is found again during new detection phases (in the
following days), for a certain number of times in a row, an alert will be sent to the
user.

Artificial data were also generated to simulate a faulty hot water tank equipped
with an electric heater. To do so, the heater is forced to shut off after a certain
time of operation, in some cases a shorter time than required to reach the
temperature set point. Then, after some more time, the heater starts again,
simulating a cool down in the zone where the control thermostat is located, due
to the heat diffusing slowly into the tank. This results in an intermittent heater
operation as it can be seen in Figure 15. The temperature consequently increases
in a staircase shape, although the actually sensor measurements should show a
smoother curve. The detection can be carried out on these curves by counting the
number of starts and stops and comparing it to that of the fault-free model. Then,
the average slope of each temperature rise can also be calculated and compared
to the expected heater rated power, or the power measured during the
implementation of IS2-2. Finally, transient state delay should be observable and
measurable on the temperatures rises curves.
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Figure 15.Simulation of scale. From top to bottom, graphs show the water
temperatures at four heights, DHW withdrawal, power delivered over time
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2.3.2.4. Next Steps

The IS needs to be tested on real-life data. UAyy identification can easily be
performed on HWT tank data during a heat-up phase. CEA has some sort of such
data. Some online data are also available since extensive research has been
carried out on different aspects of water heating systems [6].The issue comes up
regarding faulty (affected by a lot of scale) hot water tanks since available real-life
fault-related data is scarce. Datasets of both fault-free and faulty HVAC systems
exist, but they mainly include gas boilers [7], [8] which is not exactly what we are
considering in the present analysis. Therefore, we hope to find experimental data
of scaled or fouled HWT in the upcoming weeks or months in order to test our
solutions. Perhaps the pilot sites will provide us with such data. Another aspect
worth considering is the temperature stratification in hot water storage tanks. In
fact, the present HWT model considers perfect heat mixture between each layer
of the tank during the heat-up phase (if a lower layer is hotter than its upper
neighbor is, they mix and average their temperatures). In practice, in some cases,
hot water heated up by the heating element tends to rise and accumulate at the
top of the tank, due to its lower density and this with little mixture. Layers appear
where the hot water is concentrated in the upper layers, and the cold water
remains at the bottom. This is clearly showcased by [6] who highlight in their
experimental testbed a high degree of stratification in the tank and that tends to
persist over time, both during the heat up and the cool down phases. However,
other studies show rather the opposite phenomenon, as showcased in, e.g,, [9], in
cases B, C and particularly case A, in which no stratifier is used. The question
remains on whether stratification will occur in the pilot sites tanks. If so, and if few
temperature sensors are available, these few sensors might give a mistaken idea
of the temperature field inside the tank, especially in the case where only one
temperature sensor is available. Finally, CEA is also considering testing a home-
made model allowing to evaluate the withdrawn volume through the hot water
tank, only using the following information: temperatures metered inside the tank
and the energy consumed by the heater or the heat exchanger.

2.3.3. Battery ageing prognosis (1S2-3)

The current innovative solution so-called 1S2-3 is an original tool developed by the
CEA through the EVELIXIA project. The 1S2-3 developed by CEA provides in real
time the state-of-health and remaining life of the battery under surveillance.

2.3.3.1. Objectives

The Energy Assets Maintenance - Battery ageing prognosis (IS2-3) aims to
calculate the battery state of health (SOH) and remaining useful life (RUL) in order
to help the planning of battery maintenance.

2.3.3.2. Methodology

The IS2-3 uses battery operation data. Data processing is a key step in the
development of advanced approaches for systems analysis. In a first step, an
acquisition of the monitoring data shall be performed automatically. Then, a data
processing structures the raw data and extracts the key indicators using statistical
techniques and data-driven algorithms. Six families of indicators can be proposed
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as indicated in Figure 16. Within the EVELIXIA project, CEA is focusing on health
indicators: diagnosis of the current SOH of the BESS and prognosis of its future
SOH and RUL.

JdS: State Indicators

Idi: Usage Indicators

IdP; Pedformance Indicators
1dC: Comparison Indicators
1dX; Diagnasts Indicators

Preprocessing :
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Indicators
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Figure 16.Architecture for BESS diagnosis / prognosis

The SOH and RUL can be calculated using Calendar and Cycling degradations.
SOH degradation can be dissociated by cycling and calendar contribution
(respectively SOHcycandSOHcal). With simplified cumulative linear approach and
considering similar past/future use, this repartition can be expressedas:
SOHEOL = SOHBoL - B’E;IRUL - EZ;FEC

with@,, the average calendar degradation rate expressed as ASOH.qper year,
ﬂthe average cycling degradation rate expressed as ASOH.,. per FEC, FEC the
Full Equivalent Cycles, BoL is Beginning of Life, EoL is End of Life. Figure 17 shows
the cumulative degradations inducing battery SOH decrease.

SOH *
SOHg,, * ‘
v | - Cycling contribution AS( M,
SOH¢,, F;c ~» FEC
L - > l.nﬂim.
() " RUL

Figure 17.SOH and RUL calculation vs Calendar and Cycling degradations

CEA has developed two approaches for the prognosis of battery aging. The first
one relies only on operation data and does not need a pre-calibrated battery
aging model. This approach is shown in Figure 18. The second approach needs a
pre-calibrated battery aging model and is shown in Figure 19.
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Figure 18.Diagram and example for approach 1: Battery SOH prediction without pre-
calibrated model

The Inputs for the first approach are Battery nominal Energy (Wh)/capacity (Ah)
from battery supplier. Current (l), voltage (U), temperature (T), state of charge
(SOC) given by the BMS and if possible, SOH given by the BMS from data
acquisition on the BESS.

[ niso ]3]
Data processing
LU,T.SOC Calendar and ageing tests
Statistical study : data Identification of model
histogramms parameters
Extraction of A model
representative profile e

Modeling, SOH and RUL

Figure 19. Diagram of 2nd Approach: Battery SOH prediction
using pre-calibrated aging model

The second approach can be applied for EVELIXIA only if we have complete
datasheet allowing to pre-calibrate an aging model or if model on similar
technology would be available. In addition to the operation data, detailed
information about the battery system: cell supplier, cell datasheet and BESS
architecture (parallel and series) are needed.

2.3.3.3. Evaluation & Results

CEA conducted meetings with two pilot sites (PS6: Spanish and PS7: Finnish) in
order to work on the useful data from the BESS. The datasheet given by PS6
indicates that the batteries are either VRLA (Valve Regulated Lead Acid Battery) or
NiCd (Nickel Cadmium battery). The use of IS2-3 on these battery chemistries
needs a lot of new development that cannot be done during EVELIXIA Project.
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VRLA and NiCd need for example overcharge and have secondary reactions and
their aging is very different from Li-ion batteries. IS2-3 is calibrated on Lithium-lon
batteries. Thus, finally 1S2-3 tool will be used only on PS7, which has Lithium-lon
batteries. 1S2-3 development task in EVELIXIA project allows continuing the
development of CEA battery diagnosis and prognosis tools. For example, the
calculation of full equivalent cycles using operation data have been improved
recently. The CEA has not yet data from pilot sites to give results on these BESS.

Figure 20 below shows results on three BESS in a power plant from which the CEA
got data for 7 years during a previous project (in the context of a call from the
French Commission for Energy Regulation). This figure shows that the SOH given
by the BMS is higher than the one given by the A4 - RM algorithm, which is higher
that the SOH given by the aging model. The BMS does not detect that the battery
capacity is lower at the beginning of the operation due to calendar aging. The
difference between the A4-RM algorithm and the aging model results is less than
3 % for BESS1 and BESS3 and about 4 % for BESS2.
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Figure 20.SOH evolution versus the number of equivalent cycles using A4 RM
algorithm, an empiric ageing model and SOH from the BMS

2.3.3.4. Next Steps

Regarding 1S2-3, CEA will work on the integration of one or two BESS in the tool
presented in Figure 16. CEA will pre-calibrate aging model if the available data
allows this. Thus, CEA will simulate the SOH and RUL using both approaches
described in Figure 18 and Figure 19. Detailed results will be given later when
CEAreceives enough data from pilot sites.
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2.4. Demand Forecasting (I1S3)

EVELIXIA's Innovative Solution 3 (IS3) "Demand Forecasting" developed by
CERTH/CPERI, is a critical component of the "Building Awareness and Forecasting
Toolbox". 1S3 supports evaluating different control scenarios (e.g. efficient
resource planning, load balancing, energy trading) by utilizing predictive
algorithms for local energy production and consumption across various vectors
(electricity, heating, gas) and scales (building, district) through Machine Learning
(ML) and Deep Learning (DL) techniques. During EVELIXIA, 1S3 contributes to the
development of a multi-dimensional toolbox with modelling functionalities that
support B2G services. To achieve this, CERTH/CPERI advances the tool's
capabilities to a) autonomously determine the most promising algorithm for
several network types (ANN, SVR, LSTM, GBT, ARIMA) and topologies (two-stage,
ensembled, hybrid) based on a set of attributes and metrics to ensure optimal
forecasting accuracy under varying conditions (see Section 2.4.2.4), and b)
integrate a clustering component based on generic-purpose clustering
algorithms, such as K-means and the Density-based clustering of applications
with noise (DBSCAN). In support of a broad range of interested stakeholders (i.e.,
building managers, energy planners, consultants, aggregators, grid operators), 1S3
offers a refined understanding of energy consumption and production patterns
and complements the data-driven forecasting capacity of a) the Building Energy
Modelling and Simulation (IS5), and b) the Multi-Vector Grids Energy Modelling
and Simulation (IS15) by enabling multi-dimensional forecasting.

2.4.1.0bjectives

IS3 - Technical Objective "TRL5 to TRL7": Originally validated in the relevant
environment of several past EU-funded projects (e.g. SMILE GA No. 731249,
RENAISSANCE GA No. 824342) Demand Forecasting is introduced to EVELIXIA at
Technology Readiness Level (TRL) 5. Advancing towards TRL6, a working version
of IS3 is tested in the controlled, operational environment of the Greek Pilot Site
(GR-PS). Testing is conducted using simulation data generated by IS5 - "Building
Energy Modelling and Simulation" (see Section 2.6) for the CPERI office building
(see Section 2.4.3). Upon integration of the EVELIXIA platform within GR-PS and
establishment of its APl connection with IS3, hour-ahead forecasting using sensor
data sourced from the platform will be performed to complete testing.
Progressing towards TRL 7 until the end of the project, future efforts and
refinements of the tool target demonstration of the technology across all
EVELIXIA pilot sites and end-user validation to expand its real-world applicability.

IS3 - Scientific Objective "Energy consumption and generation forecasting":
Develop and implement advanced, accurate, data-driven energy demand and
local production forecasting services across EVELIXIA's Pilot Sites (PS) through the
autonomous selection of suitable algorithms and the integration of clustering
techniques. These services assist facility managers and aggregators of large
building portfolios in energy management, with accurate forecasting and B2G
service delivery (e.g. demand shifting and voltage regulation).
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2.4.2, Methodology
2.4.2.1. Data extraction

To source the required input data, 1S3 connects through the respective APIs of the
energy modeling tools for building- and grid-level analysis developed by IES,
namely:

e |SI5-intelligent Virtual Network (iVN), a high-level district modelling tool for
performing simulations of city or community-level commodity distribution
networks

e |S5-iISCAN, a powerful data acquisition and monitoring system designed to
streamline energy management processes, facilitating real-time data
extraction, storage, and analysis

The automation exchange involves configuring in-house Python-based scripts,
providing access to historical and real-time energy consumption values, and
efficient data collection and transformation. The integration significantly
enhances forecasting efficiency, as it eliminates errors, and the manual effort
required for data handling and collection and ensures that models are trained
and tested on the most relevant, up-to-date energy consumption data. This
streamlined process establishes a continuous pipeline of forecasting updates,
facilitating real-time adaptations of predictions.

2.4.2.2. Dataset

To perform hour-ahead forecasting based on a given dataset, a new column
("Next Hour") is created by shifting the energy consumption values forward by one
time step. This column serves as the target variable that the forecasting models
aim to predict. Several pre-processing steps are then applied to the initial dataset
to ensure data quality and enhance model performance.

e A normalization occurs to the time series to scale the data between O and 1,
preventing bias toward larger numerical values.

e To capture temporal dependencies, lag features incorporate past energy
values, along with a rolling mean feature to smooth short-term
fluctuations.

e Missing values resulting from these transformations are dropped to
mMaintain consistency.

e The dataset is divided into training (90%) and testing (10%) sets, ensuring
the models are trained on historical data while being evaluated on unseen
future values.

[ ]

These preprocessing steps formulate the Baseline Model and enhance the
predictive power of the models by incorporating historical trends and reducing
noise in the dataset.
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2.4.2.3. Models Benchmarked

A set of predictive models are integrated into the analytical framework of 1S3 to
ensure precise forecasting. All selected models are executed as part of the
analysis, ensuring a robust and concurrent evaluation of building energy
dynamics. This approach is essential for capturing the heterogeneous nature of
building energy data, optimizing computational efficiency, and tailoring the
framework to the specific requirements of the EVELIXIA project, particularly
regarding non-dispatchable plants. The rationale for employing such a diverse set
of models for EVELIXIA is twofold. Firstly, it provides a comprehensive benchmark
of predictive performance across different algorithmic paradigms, thereby
ensuring reliability in forecasting outcomes Secondly, it brings adaptability and
versatility when accommodating to various operational scenarios and data
characteristics encountered in diverse real-world applications. This strategy is
integral to achieving the EVELIXIA goal of enhancing building awareness and
supporting advanced grid services across PSs. The selected predictive models are:

e Baseline (Persistence) Model: Assumes the current hour's value is the same
as the next day's value.

e [STM (Long Short-Term Memory): A Recurrent Neural Network (RNN)
designed to handle sequential data and long-term dependencies, capable
of capturing complex temporal patterns.

e GCradient Boosting (GBM): An ensemble technique that builds models
sequentially, optimizing errors at each step. Highly flexible, it delivers strong
predictive performance but can be prone to overfitting if not properly
tuned.

e Random Forest: An ensemble method that combines multiple decision
trees to improve accuracy and reduce overfitting. It is robust to noise and
works well for both classification and regression tasks.

e XGBoost (Extreme GCradient Boosting): An ensemble learning method
based on gradient boosting, designed for speed and performance. It is
widely used for structured data problems and excels in handling missing
values and complex patterns.

e LightGBM (Light GCradient Boosting Machine): A gradient boosting
framework optimized for efficiency and scalability. It uses a leaf-wise tree
growth strategy, making it faster and more memory-efficient than
traditional boosting models.

e CatBoost (Categorical Boosting): A gradient boosting algorithm that is
highly optimized for categorical data. It automatically handles categorical
variables without extensive preprocessing, reducing the risk of overfitting.
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Figure 21. Synopsis of the 1S3 workflow
2.4.2.4. Evaluation Metrics

To assess the predictive performance of the selected models within the [S3
framework for EVELIXIA, widely used evaluation metrics that capture different
aspects of forecasting accuracy and reliability are employed. These metrics
qguantify errors in both absolute and relative terms, highlight the significance of
large deviations, facilitate standardized comparisons across varying forecasting
tasks, and validate reliable and efficient delivery of B2G services. Model evaluation
is based on the following performance metrics:

Mean Absolute Error (MAE): Measures average absolute error.
n

1
MAE=—2 =7
n'llyl yil

=

Root Mean Squared Error (RMSE): Penalizes large errors.

n
1
RMSE = |- (i = 5)?
i=1

Mean Absolute Percentage Error (MAPE): Provides a relative error percentage.
n
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2.4.3. Evaluation & Results

For the purposes of this initial test run, the evaluation regards evaluation
algorithm selection for forecasting methods at the building level following a
manual approach and allowing for the incorporation of domain expertise and
specific performance criteria. Future work will focus on developing the planned
automated selection mechanisms to dynamically optimize model choices based
on evolving data characteristics and operational needs. The retrieved dataset
comprises of hourly values of the energy consumption profile generated by IS5-
iSCAN (Figure 22) for the CERTH office building of the GR-PS labeled as "Total
system energy."
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The resulting key performance metrics for each model are summarized in Tablel.
Random Forest and Gradient Boosting demonstrate the highest predictive
accuracy, achieving the exceptionally low MAPE values of 0.03% and 0.05%,
respectively. These results underscore that tree-based ensemble methods are
highly effective for short-term energy forecasting, as they adeptly capture
complex interactions among lagged energy consumption values without the
need for extensive data preprocessing. Such precision is critical for EVELIXIA's aim
of supporting demand shifting and voltage regulation. Conversely, LSTM, despite
its robust capability to model sequential dependencies, exhibits a high error rate
(MAPE = 0.90%). This disparity is mainly attributed to the limited size of the
dataset, suboptimal hyperparameter tuning, or insufficient training iterations.
Another key observation is that LightGBM and CatBoostperform well overall with
MAPE values of 0.14% and 0.34%, respectively. However, these models exhibit
some smoothing effects, a characteristic that indicates lower responsiveness to
abrupt fluctuations in energy demand, in consistency with gradient boosting
algorithms that prioritize overall prediction accuracy.
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Figure 22. Total system energy examined dataset

Table 1. Resulting performance metrics

Model MAE RMSE MAPE (%)
Baseline 0.0692 0.1406 30.5
LSTM 0.00197 0.00315 0.90
XGBoost 0.00035 0.00086 0.12
LightGBM 0.00046 0.00222 0.14
CatBoost 0.00082 0.00138 0.34
Random Forest 0.00008 0.00048 0.03
Gradient Boosting 0.00019 0.00053 0.05

Figure 23 presents the resulting MAE for all models. While the Random
Forest model outperforms the others, it is important to point out that all
models produced forecasts with acceptable accuracy (MAPE < 1.0%) in the context
of energy management. These forecasts can facilitate other services, such as
demand response optimization, voltage regulation, and predictive
maintenance. By ensuring reliable short-term predictions, the models
contribute to the efficient operation of distributed energy resources (DERS)
and enhance the overall stability of the power system.
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Figure 23. The Mean Absolute Percentage Error across models.

The evaluation of the predictive models highlights key differences in their
forecasting performance, capturing trade-offs between accuracy, computational
efficiency, and adaptability to different patterns in the data. Key observations
across the predictive models reveal distinct strengths and limitations.

The Baseline Model(see2.4.2.2) serves as a simplistic benchmark, but performs
poorly, exhibiting the highest RMSE.

LSTM effectively captures long-term dependencies but shows slight fluctuations
due to sensitivity to noise. Occasionally lagging behind actual values, it is likely
hindered due to training data limitations or suboptimal hyperparameter tuning.
XGBoost provides stable and precise predictions with minimal deviations but
struggles with sudden trend shifts, a common limitation of tree-based models in
sequential forecasting.

LightGBM delivers competitive accuracy with fast computation, adept at
capturing short-term variations, but occasionally smoothing out rapid fluctuations
due to its leaf-wise growth approach.

CatBoost performs well on structured data, balancing accuracy and efficiency,
though it sometimes struggled to adapt to sharp peaks and troughs, likely due to
its reliance on categorical transformations. Random Forest produces stable but
overly smooth predictions, missing finer details due to the averaging effect of
multiple decision trees, which reduces variance at the cost of responsiveness to
abrupt changes.

Gradient Boosting effectively captures the overall trends but shows slight
overfitting in some cases, making it less adaptable to dynamic shifts in the data.
Overall, the analysis underscores that no single model is universally superior;
instead, the choice of model depends on the specific forecasting requirements,
such as sensitivity to sudden changes, long-term trend detection, or
computational constraints. By leveraging the strengths of each approach, energy
Mmanagement strategies can be optimized for improved forecasting accuracy and
grid service efficiency.
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Figure 24 resents the resulting forecasts of each model for an indicative day.
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Figure 24. Resulting forecasts of each model compared to the actual time series for
one day.

The resulting metrics indicate that a) ensemble-based tree models outperform
traditional statistical approaches while requiring less computational cost
compared to deep learning models like LSTM, and b) ML & DL models generally
outperform classical statistical methods for day-ahead energy forecasting. Among
the tested models in this initial test-run:

Random Forest and Gradient Boosting emerges as the best-performing
models, achieving the lowest performance metrics.

The Tree-based models (i.e., XGBoost, LightGBM, CatBoost, and Random
Forest) achieve significant accuracy, demonstrating strong predictive power and
stability.

Random Forest exhibits the lowest performance metrics due to its ability to
reduce overfitting through ensemble learning for the given dataset.

LSTM performs reasonably well, but had a slightly higher error rate, indicating
that deep learning models require fine-tuning and a larger dataset to fully
capture complex temporal dependencies.

Gradient Boosting and CatBoost return promising and competitive results, but
they struggle with sudden changes in energy demand, highlighting the
limitations of boosting models in highly volatile time series.

The results highlight the effectiveness of ML and DL models for short-term energy
forecasting, demonstrating a significant advantage over traditional statistical
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methods. Among the evaluated models, a) Random Forest and Gradient Boosting
exhibit the highest performance, achieving optimal accuracy with minimal error
rates for the given dataset, and b) LSTM model shows potential in capturing
seguential dependencies despite its limited performance, likely due to dataset
size and training constraints. However, since model performance is inherently
dependent on the characteristics of the dataset (such as feature distributions,
sample size, and data quality), results may vary with changes in the dataset,
potentially affecting predictive accuracy and generalizability as 1S3 benchmark
models take into account these particularities across scenarios.

2.4.4. Next Steps

In the forthcoming phase of the EVELIXIA project until M24, the main
advancements and activities related to 1S3 that are underway, pertain to:

e further streamlining data acquisition and preprocessing through IS5-iSCAN
and IS15-iVN in parallel with the modelling progress, ensuring a robust and
automated forecasting pipeline across EVELIXIA's PSs.

e exploring hybrid models that combine the sequential learning capabilities
of LSTM with the structured feature selection strengths of tree-based
models to develop an automatic model selection process that identify well-
performing models based on the specific forecasting task and data
availability, providing insights on accurate and reliable forecasting services

e employing hyperparameter optimization and feature selection techniques
to further enhance predictive accuracy and adaptability across different
energy system scenarios.
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2.5. Flex Forecasting (1S4)

The Flex Forecasting (IS4) service focuses on proactively assessing and forecasting
the levels of demand-side flexibility that could potentially be provided by
distributed loads in buildings. In this way, IS4 will contribute to optimizing energy
consumption and grid stability in buildings, particularly with the increasing
integration of Renewable Energy Sources (RES). This can be achieved through
the management of individual building systems (such as white goods, HVAC
systems, etc.).By accurately predicting the availability and magnitude of this
demand-side flexibility, building and grid managers can make informed decisions
on energy allocation and load balancing, thus reducing energy cost and grid
congestion and participating in Demand Response (DR) programs. This proactive
approach allows for a more efficient and flexible energy system in buildings,
maximizing the use of Renewable Energy Sources (RES) and minimizing
dependence on peak generation resources. The foundation of the tool is in
advanced algorithms and models considering historical building energy patterns,
various factors that influence building energy consumption, including weather
forecasts, occupancy patterns, building thermal characteristics and appliance
operation.

2.5.1. Objectives

The primary objective of IS4 is to evaluate and forecast the demand-side flexibility
limits at the building level, focusing on both thermal and electrical demand. This
involves the development of advanced Machine Learning algorithms and models
capable of quantifying the demand flexibility potential arising from the various
building systems (HVAC systems, lighting, etc.). More specifically, IS4 predicts the
amount of flexibility that a building has to either increase its energy consumption
during periods of surplus energy production (up-flexibility bound) or reduce its
energy consumption during time periods of energy production shortage or high
demand (down-flexibility bound). By providing accurate predictions of building
energy consumption patterns and demand-side flexibility limits, 1S4 will
contribute to optimizing energy management strategies, reducing peak demand,
increasing the economic benefits for residents and integrating RES into the grid.
In addition, IS4 also promotes a detailed scientific framework for analyzing and
utilizing demand-side flexibility within the buildings by establishing reliable
methodologies and performance metrics that quantitatively assess the demand
flexibility limits. This approach integrates data analytics methods, Machine
Learning techniques in order to estimate and predict the demand side flexibility
in buildings and optimize the load response, thus contributing to grid stability. IS4
promotes the transition to sustainable energy practices by providing smart
energy systems within the buildings and supporting the active participation of
buildings in the flexibility markets.

2.5.2. Methodology

For the technical development of IS4, the necessary data were collected through
the building simulation model provided by IS5 (see Section 2.6). In this way, it was
ensured that the solutions proposed by 1S4 will be fully aligned with the needs
and requirements of the EVELIXIA project. More specifically, historical energy and
weather data for one year were used regarding the Greek Pilot site, which
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includes the offices of CERTH and Mpodosakeio Hospital. Furthermore, the results
obtained from IS4 could be directly applicable to the Greek Pilot site, supporting
the integration of the various ISs in WP4 (EVELIXIA's Intelligent B2G and G2B
Services). The analysis of historical energy consumption patterns is critical and
necessary for the technical development of IS4, as they contribute to the
understanding of the energy behavior and the overall energy and operational
efficiency of a building. Figure 25 and Figure 26 represent the boxplots of one
year's energy consumption for the Greek Pilot site which were extracted from IS5.
In particular, each boxplot shows the distribution of energy consumption by hour
within the year, allowing visual comparison of energy patterns and understanding
hourly variations in energy consumption allowing for periods of high or low
consumption, which are critical for planning energy strategies.
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Figure 25. Boxplot of total building energy consumption for a year - CERTH
Offices (Greek Pilot site)
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Figure 26. Boxplot of total building energy consumption for a year -
Mpodosakeio Hospital (Greek Pilot site)

For the technical development of IS4, a detailed approach was used utilizing k-
Means algorithms to study and classify historical energy consumption patterns
and determine the demand-side flexibility limits for the Greek Pilot site. By
creating groups of consecutive two-day periods within the year and using static
analysis metrics (mean value and standard deviation) for the annual energy
consumption data, considering the outdoor temperature, k-Means was used to
classify similar energy behaviors. The choice of two consecutive days allows for the
recording and analysis of short-term changes in energy consumption, which may
be influenced by external factors such as external temperature and the behavior
of occupants and contributes to provide overview of daily energy patterns and
improve the accuracy of energy demand forecasts.

More specifically, this methodology involves two clustering stages:

e The first step of k-Means clustering for the outdoor temperature,

e In the second step, k-Means clustering is applied to the building energy
consumption data within each cluster obtained from the first stage,
ensuring that energy consumption patterns are analyzed in relation to their
corresponding outdoor temperature groupings/clusters.

In the first clustering step, the k-Means methodology was applied to the
outdoor temperature data. In this way, days with similar temperature
conditions were grouped together, thus creating clusters representing
different temperature profiles. This analysis is critical as outdoor temperature
has a significant impact on energy consumption. Figure 27 and Figure 28
present that the best classification of the data based only on outdoor
temperature of all two consecutive days of the year is in 2 clusters for the
Greek Pilot site since it has the highest silhouette score.
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Figure 27. Silhouette scores of outdoor temperature clustering - CERTH
Offices (Greek Pilot site)
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Figure 28. Silhouette scores of outdoor temperature clustering - Mpodosakeio
Hospital (Greek Pilot site)
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In the second stage, within each of the above 2 clusters resulting from the
outdoor temperature analysis, k-Means was applied to the corresponding energy
consumption data contained in them. In this way, energy consumption patterns
that are similar under specific outdoor temperature conditions were identified.
Figure 29 shows that the first outdoor temperature cluster contains 4 energy
consumption sub-clusters, while Figure 30 indicates that the second cluster
includes 2 sub-clusters regarding the CERTH offices (Greek Pilot site).

Silhouette Score vs Number of Clusters

Mumter of Ousters

Figure 29. Silhouette scores of building energy consumption clustering in the
first outdoor temperature cluster - CERTH Offices

Siihouette Scare vs Number of Clusters

Figure 30. Silhouette scores of building energy consumption clustering in the
first outdoor temperature cluster - CERTH Offices
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Therefore, applying the same analysis to the two resulting groups of external
temperature for Mpodosakeio Hospital (Greek Pilot Site), Figure 31 shows that
there are 7 energy consumption sub-clusters based on the highest silhouette
score, while Figure 32 shows that there are involved 6 sub-clusters.
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Figure 31. Silhouette scores of building energy consumption clustering in the
first outdoor temperature cluster -Mpodosakeio Hospital
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Figure 32. Silhouette scores of building energy consumption clustering in the
outdoor temperature cluster - Mpodosakeio Hospital
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Following the k-Means clustering process, IS4 is able to predict the demand side
flexibility bounds. The predicted energy consumption, weather conditions and the
corresponding data of the previous day are given as input to IS4. The service then
classifies the forecast into the appropriate cluster. Using the historical energy data
from buildings with the most similar and non-similar behavior within that cluster
being classified, the required flexibility limits are determined. The predicted
demand-side flexibility bounds will be discussed in more detail in the next section
(Section 2.5.3).

2.5.3. Evaluation & Results

For the technical development of IS4, as mentioned before, historical energy
consumption data as well as outdoor temperature data for one year were
collected through IS5 for the Greek pilot area, allowing a detailed analysis of the
energy behaviour and performance of the buildings in EVELIXIA. Figure 33 shows
the outdoor temperature data during the simulation period during which they
were collected, as well as the cluster from the k-Means process with different
colours in different colours (red and blue) for the CERTH Offices (Greek Pilot site).
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Figure 33. Outdoor temperature data for the CERTH Offices according to the
clustering procedure (first cluster-blue and second cluster-red)
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Also, Figure 34 and Figure 35present the energy consumption data for the
CERTH offices where the different classification for each of the two above
mentioned clusters of the outdoor temperature is shown in different colours.
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Figure 34. Energy consumption data for CERTH Offices according to the first
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Figure 35. Energy consumption data for CERTH Offices according to the

second outdoor temperature cluster
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Regarding the Mpodosakeio Hospital (Greek Pilot site), Figure 36 presents the
outdoor temperature data during the simulation period in which they were
collected, as well as the cluster from the k-Means process with different colours
(red and blue). In addition, Figure 37 and Figure 38 indicate the energy
consumption data for the Mpodosakeio Hospital where the different classification
for each of the two above-mentioned clusters of the outdoor temperature is
shown in different colours.
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Figure 36. Outdoor temperature data for the Mpodosakeio Hospital according
to the clustering procedure (first cluster-blue and second cluster-red)
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Figure 37. Energy consumption data for Mpodosakeio Hospital according to
the first outdoor temperature cluster
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Figure 38. Energy consumption data for Mpodosakeio Hospital according to
the first outdoor temperature cluster

Predictions of energy consumption and corresponding outdoor temperature
based on the IS5 model simulation data were usedto present the predicted
demand-side flexibility limits. More specifically, the procedure followed involves
using data from the IS5 dataset, considering them as forecasts in order to be used
in the analysis and calculation of demand side flexibility bounds. This approach
allows the accurate analysis and management of energy demand, considering
changes in weather conditions and energy consumption patterns for the future
days. The forecasted energy consumption, weather conditions and the
corresponding data from the previous day are given as input to IS4. This tool
classifies the forecast into the appropriate cluster using the above k-Means
clustering methodologies. Then using the historical simulated energy data from
the Greek Pilot site that exhibit the most similar and non-similar energy
behaviour within the cluster being classified, the required flexibility limits are
determined by calculating the mean value of the above energy consumption
data. Figure 39 presents the indicativeforecasted demand-for the first energy
consumption sub-clusters for CERTH offices Figure 40 respectively for the first
energy consumption sub-cluster of Mpodosakeio Hospital.

e Blue color represents the building's flexibility to increase energy

consumption (up-flexibility bound).
e Red color indicates the predicted limit for reducing energy consumption
(down-flexibility bound).

e Green color shows the forecasted energy consumption(baseline).
The following results represent a one-day forecast with hourly granularity and at
the points where the three waveforms overlap, there is no available flexibility.
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IS4 Annex provides all the indicative predicted demand side flexibility bounds for
each of the aforementioned building energy consumption sub-clusters for both
CERTH Offices and Mpodosakeio Hospital (Greek Pilot site).
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Figure 39. Predicted Demand side flexibility bounds for the first energy
consumption sub-cluster of CERTH Offices (up- flexibility bound (blue), down-
flexibility bound (red), baseline (green))
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Figure 40. Predicted Demand side flexibility bounds for the first energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))
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2.5.4. Next Steps

Regarding the next steps of the IS4 technical development, it is intended to
further improve the effectiveness of IS4 by incorporating additional metrics
during the process of classifying the building's energy behavior (such as
photovoltaic (PV) generation, intra-day energy cost values, integration of EV
chargers, etc.). These steps are expected to improve the accuracy and reliability of
IS4's predicted demand-side flexibility limits, contributing to optimizing the
building energy consumption and supporting the grid stability. In addition, the
forecasts provided by the demand forecasting tool (1S3) will be used as baseline in
order to estimate and predict the limits of demand-side flexibility. At the same
time, it is planned to integrate IS4 into the whole WP4 through T4.6 by month
M24 of the project, contributing to the integration of the different ISs into
EVELIXIA (D5.1). In conclusion,IS4 will be also deployed in other EVELIXIA's Pilot
Sites either through the IS5 simulation model or by receiving either historical or
real-time data through T4.6.

2.6. Building Energy Modelling and Simulation (1S5)

The Building Energy Modelling and Simulation tool (IS5) is built upon the IES
Virtual Environment (VE) tool, a comprehensive simulation software widely used
for energy performance analysis, building design optimization, and sustainability
assessments. VE enables detailed modelling of buildings by integrating physics-
based simulations with real-world operational data, facilitating informed decision-
making across the entire building lifecycle. The software’s core simulation engine,
Apache, performs advanced thermal and energy analyses, allowing users to
evaluate various designs and operational scenarios with high accuracy.

IS5 extends traditional digital twin (DT) functionalities by combining physics-
based and data-driven modelling approaches. A key innovation within EVELIXIA
is the development of VE-based hybrid DT which leverage real-time data from
loT devices, smart meters, and external sources (e.g., weather platforms). This
enables the creation of calibrated and refined digital twins that more accurately
reflect the actual operational behaviour of buildings. Additionally, IS5 will
introduce load disaggregation and the deployment of virtual sensors to
enhance building performance insights across interconnected networks,
supporting sector coupling services.

To ensure seamless integration within the broader EVELIXIA ecosystem, IS5 is
being configured for machine-to-machine (M2M) communication and semantic
interoperability through APIs to the project's central server. This will enable
automated data exchange with other ISs and tools, allowing IS5 to function not
only as a standalone energy modelling tool but also as an integrated component
of the EVELIXIA Building-to-Grid services layer, supporting a more efficient and
interoperable energy management ecosystem.

As of M17, during the preparation of this deliverable, the methodology is being
defined and tested within the Greek pilot. The results and refinements from this
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phase will inform the replication across the remaining six pilot sites by M24,
with final outcomes to be reported in D4.2.

2.6.1.0bjectives

The primary technical and scientific objectives of IS5 within the EVELIXIA context
include:

e Enhance Building-to-Grid Services: Develop and deploy a simulation
engine that will facilitate the integration of buildings with grid services,
specifically focusing on energy flexibility and demand response capabilities.

e Hybrid DT: Create digital twins that combine both physics-based models
and data-driven models for more accurate simulations of building
performance, enabling precise demand response management.

e Interoperability with Other ISs: Ensuring seamless data exchange across
different systems, including integration with other ISs within T4.1(IS1(Indoor
Air Quality Service),IS2 (Microgrid Maintenance Service), IS4
(thermal/electricity  flexibility —forecasting) and 1S3 (local energy
consumption/generation forecasting)), and support for the decision-
making and forecasting services developed within T4.2. The outputs from
IS5 will feed into the Building Awareness Toolbox (T4.1) and the
Autonomous Building Decision Support Toolbox (T4.2), enabling more
informed and proactive forecasting, demand planning, and energy
performance management.

2.6.2. Methodology

The development of IS5 involves the integration of several methodologies,
focusing on simulation,DT modeling, and data interoperability. The general
methodology is divided into the following phases:

1. Data Collection, Baseline DT Model Preparation and Calibration
To accurately model the seven pilots in the EVELIXIA project, a structured data
collection process was established. An Excel file was prepared and circulated
among the pilot leaders, requesting all necessary information to build the
baseline models for each pilot building. This included:
e General Building Characteristics: Location, year of construction, building
type, and occupancy patterns.
e Architectural & Geometric Data: Floor plans, elevations, and construction
details.
¢ HVAC & Energy Systems: Heating, cooling, ventilation, lighting, and energy
storage.
e Metering & Sensor Data: Available |0T devices, smart meters, and energy
monitoring systems.
e Weather & Environmental Data: Local climate conditions from on-site and
off-site sources.
e Operational Data: Historical energy consumption, load profiles, and
maintenance schedules.
In case of lack of data availability, assumptions are made to fill in missing
information based on standard building codes (e.g. ASHRAE), benchmark data,
and expert judgment.
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Once the data are collected, each pilot's DT is developed using IES Virtual
Environment (VE). This process includes:
e 3D Geometry Construction: Using the provided architectural drawings to
create an accurate representation of the buildings.
e Zoning & Thermal Segmentation: Dividing the buildings into thermal
zones based on occupancy and usage patterns.
e Envelope Properties Assignment: |Inputting wall, roof, window, and
insulation properties to reflect real-world performance.

Finally, in this initial phase the model is calibrated using historical real data to
ensure the accuracy of the simulations. So, simulation outputs (e.g., energy
consumption, indoor temperatures) are compared with available real energy use
data from the pilots.

2. Simulation, Integration and Interoperability
Once the baseline models are developed and preliminarily calibrated, extensive
simulation processes are conducted to evaluate energy performance, demand
flexibility, and comfort levels. This phase includes:

e Baseline Performance Simulations: Running simulations under typical

operating conditions to assess baseline energy consumption, indoor
comfort metrics, and potential flexibility capacities.

e Scenario Analysis: Evaluating different operational strategies, demand
response scenarios, and grid interaction capabilities. These simulations help
identify how buildings can adjust consumption patterns to support grid
services while maintaining occupant comfort.

e Integration with iISCAN Platform: Simulation results are exported to iISCAN
for data visualization, collaborative analysis with partners, and further
validation. This step enables stakeholders to assess building performance
through an interactive platform that supports exploratory data analysis.

e APl Development for Interoperability: APIs are developed to facilitate
data exchange between IS5, iISCAN, and the EVELIXIA project server. This
enables automated data sharing with T4.1 and T4.2 components like IS]
(Indoor Air Quality Service), 1S2 (Microgrid Maintenance Service), IS3 (local
energy forecasting) and IS4 (flexibility assessment).

2.6.3. Evaluation & Results

The first development phase (M4-M16) of IS5 focused on defining the
methodology and workflow for the development, planning and validation of the
VE's capabilities expenditure in terms of B2G services enhancement, hybrid DT
creation, and interoperability with the other ISs within EVELIXIA.

In particular, it has been decided to focus firstly only on the creation of the
baseline building DT model of one pilot, the Greek Demo Site, assessing its
accuracy in simulating building energy performance, and exporting its outputs
into iISCAN platform for visualization, analysis and data exchange through API to
the EVELIXIA platform and other ISs. This process was crucial in understanding
the building’s energy flexibility potential and ensuring seamless interaction with
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1. Overview of the Greek Pilot DT Model
The Greek pilot serves as the first implementation of IS5, providing a reference
framework for future replications in other pilots. The pilot is composed of 2
buildings: Mpodosakeio Hospital and the CERTH/CPERI Office building, making it
an ideal testbed for evaluating energy demand patterns and flexibility potential.
The baseline DT model was created in IES VE, integrating the following
information from D1.3 and provided by the pilot leaders:

e Architectural and thermal properties from CAD sources.

e HVAC system representation, including heating, cooling, and ventilation

configurations.

e Lighting and occupancy schedules to reflect real usage patterns.

¢ Renewable energy sources (e.g., PV panels, battery storage).

e Weather conditions and external influences using historical climate data.

Figure 42. Mpodosakeio Hospital
building in VE
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Figure 43. CERTH/CPERI building in
VE

[53
Figure 41. CERTH building google
maps view
To ensure accuracy, the simulation models were calibrated against real data

obtained from the pilot site leader. The calibration process involved comparing
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simulated vs. actual energy consumption for heating, cooling, and electricity, and
adjusting occupancy schedules and internal heat gains to match real usage
trends.

e The CERTH/CPERI Office building was validated against an annual total
electricity consumption of 275.02 MWh for the year 2022. The VE simulation
returned a yearly total electricity consumption of 247.22MWh, with a
difference of less than 10%compared to the metered consumption.

e Mpodosakeio Hospital was validated both yearly and monthly for its
electricity consumption, and only yearly from the thermal energy aspects
as no monthly metered energy data of the District Heating Network were
available. The results showed a minor deviation between simulated and
actual metered values of 6.8% in yearly thermal energy, 57% in yearly
electricity consumption, and an overall 6.3% deviation in total energy.

Funded by
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2. iSCAN for Data Visualization and Data Exchange through API

To further analyse results, the simulated data were exported to the iISCAN
platform (Figure 44), enabling partners to interactively explore building
performance metrics, and to enable real-time communication between the
digital twin and the EVELIXIA project's central server APl were developed. This
enables automated data sharing with the other ISs, and real-time updates to
support decision-making in T4.2's Autonomous Building Decision Support
Toolbox.

Figure 44. Baseline Digital Twin model results visualized in iSCAN platform
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2.6.4. Next Steps

Building on the progress achieved so far, the upcoming months will focus on
further refining IS5 and ensuring its seamless integration with other EVELIXIA
services. The key next steps include:

e Scaling and Replicating the Methodology: Expanding the baseline digital
twin approach to additional pilot sites beyond Greece.

e Enhancing Model Calibration: Integrating real-time sensor data into the
digital twin to improve the model's accuracy.

e Strengthening Interoperability & Advancing Data Exchange: Expanding
the API infrastructure to establish direct, standardized communication
between IS5, iSCAN, and the central EVELIXIA project server.
Implementing secure, scalable data-sharing mechanisms to support
real-time analytics and control strategies.

. Ensuring interoperability with IS1 & I1S2 for building awareness (T4.1),
IS3 & IS4 for local energy forecasting and flexibility assessment (T4.1),
and 1S9 & IS10 for demand planning and energy performance
optimization (T4.2).

° Facilitating the integration of all services into the EVELIXIA platform,
allowing real-time data flows, cross-service interactions, and
automated decision-making.

These advancements will significantly enhance the automation,

interoperability, and overall effectiveness of IS5 ensuring it fully supports
EVELIXIA’s mission of integrating buildings with grid services.
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3. EVELIXIA'S AUTONOMOUS BUILDING DECISION
SUPPORT TOOLBOX

3.1. Introduction

This chapter describes the tools described in Task 4.2, including the Building
Investment planning assistant service (IS6), the SRI Advisor (IS7), the Proactive
Demand Planning Service (IS9) and the Continuous Energy Performance
Manager Service (IS10). The latter service is unfolded into 3 sub-services, i.e., IS103,
IS10.b, IS10.c which include distinct optimization methods that will be applied in
different pilots.

3.2. Building Investment Planning Assistant (1S6)

EVELIXIA's Innovative Solution 6 (IS6) "Building Investment Planning Assistant" is
a critical component of the "Autonomous Building Decision Support Toolbox" that
leverages the robust framework and advanced analytic capabilities of VERIFY, a
web-based platform developed by CERTH/CPERI. VERIFY consists of two software
suites, VERIFY-Buildings (VERIFY-B) for building-level, and VERIFY-District
(VERIFY-D) for district-level analysis respectively. Building upon VERIFY-B, 1S6
holistically performs dynamic Life Cycle Assessment (LCA) and a Life Cycle Costing
(LCC) of energy systems at the building level from manufacturing to operation
taking into account a) location-specific climate conditions, b) thermal properties
of the building envelope, and c) the users' energy profile. 1S6's modular
architecture (Figure 45) integrates diverse data streams on energy prosumption,
environmental impact and financial information for all types of energy carriers
(e.g. electricity, heating, cooling), coupling VERIFY's Life Cycle Inventory (LCI) with
both static and dynamic external parameters (e.g. operational time series,
regional emission factors, fuel prices, interest rates, and others). Both suites
employ an internal energy modelling module (INTEMA) that can generate
synthetic energy profiles with hourly granularity (8,760 values per year) through
an automated process. Both suites are able to calculate pre-defined Key
Performance Indicators (KPIs) such as Lifetime Primary energy Demand, Lifetime
Global Warming Potential and Lifecycle Costs for a user-defined analysis period
that is generally recommended to be equal or greater than the expected lifespan
of the installed systems. During EVELIXIA, CERTH/CPERI will adapt its energy
performance, environmental impact, and financial returns analytics capabilities to
contribute to the development of a digital building twin with modelling
functionalities that support investment planning and evaluate the provision of
flexibility services. VERIFY's capabilities will be extended to a) utilize and fuse data
from multiple data resources (i.e., its own Postgres relational database, European
grid emissions factors observatories, its own data lake and lifecycle inventory, the
EVELIXIA platform and the data sourced by its constituent components), and b)
dynamically evaluate key financial variables (such as NPV, IRR, ROI, etc.) relevant
to the specific context of EVELIXIA's Pilot Sites (PS). In support of a broad range of
stakeholders (i.e., building managers, energy planners, consultants, aggregators,
regulatory bodies), 1S6 informs decision-making by assessing building-level
energy system investments in terms of financial benefit, taking into account not
only the expected costs and savings associated with the installation of new
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technologies, but also any direct profits from supplying the grid with renewable
energy. This allows a comprehensive evaluation of these investments' economic
viability.

Static Uifecycle Inventory | ""‘“f: "I“dl eling Model-driven LCA /

{e.g. from SimaPro) Lcc
| Vg /’
Energy analysis
Other Parameters (fus! prices, [Enviconmental assessment:
country emission factors, etc.) b ent Planning |
Data-driven LCA/ Data-driven

LcC

Legend : Litecycle Inventory (inc. clrcularity data) ‘ Synthetic / Real data source Analysis path
Figure 45. IS6/VERIFY Architecture

3.2.1. Objectives

IS6 - Technical Objective "TRL5 to TRL7": Originally validated in the relevant
environment of several past EU-funded projects (e.g., RENplusHOMES GA
No.101103450, REHOUSE GA No0.101079951, IANOS GA No0.957810, REEFLEX GCA
No.101096192, ENFLATE GA No. 101075783) VERIFY is introduced to EVELIXIA as a
tested tool at Technology Readiness Level (TRL) 5. Following the implementation
of the aforementioned project-specific advancements, a working version of IS6 is
tested using data obtained from the operational environment of the Greek pilot
site (GR-PS), advancing towards TRL6. Testing is conducted using static data
(provided by the GR-PS Manager) and simulated dynamic data (exported from
IS5-ISCAN) for the CPERI office building. Upon integration of the EVELIXIA
platform within GR-PS and establishment of the EVELIXIA platform's API
connection with 1S6 testing will be completed using dynamic data related to
operational energy consumption/generation sourced from the platform, enabling
real-world, scenario-based analysis of investment strategies. Progressing towards
TRL 7 until the end of the project, future efforts and refinements target end-user
validation to expand its real-world applicability, offering a responsive, advanced
energy-investment planning tool that is accessible to diverse ecosystem actors.

IS6 - Scientific Objective "Computation of real-time life cycle metrics": IS6 is
advanced to dynamically compute environmental and economic KPIs across
EVELIXIA's Pilot Sites (PSs), which are designed and equipped with the necessary
energy generation, management and control systems to provide grid services.
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VERIFY-B source code will be refined to update the calculation methods of its
default KPIs and modified appropriately to integrate additional equations for non-
default, EVELIXIA-specific KPIs, namely Net Present Value (NPV), Internal Rate of
Return (IRR) and Return on Investment (ROI). The cumulative list of quantitative
metrics derived from IS6 (see Section 3.2.2.5) applies across PSs. Provided they
correspond to a common analysis period, the VERIFY’s results can be aggregated
either at the PS-level or at project-level to be used in the evaluation, impact
assessment, and validation processes, confirming the attainment of EVELIXIA's
targets and long-term impact based on the upgrade scenarios that will be
implemented per PS.

3.2.2. Methodology

IS6 operates through an online platform, eliminating the need for local software
installations, making it accessible from any location with internet connectivity and
stimulating ease of deployment and navigation. At the time of writing of the
present deliverable, two approaches for the integration of IS6 with the overall
EVELIXIA platform are considered:

. Computational integration: This approach involves the integration of
VERIFY's computational back-end with the EVELIXIA platform, where
visualization is provided by IS17 (the Visual Analytics Engine, VAE). In this
case, the EVELIXIA platform will use VERIFY's API to make analysis requests
for specific scenarios. VERIFY will respond with a corresponding JSON file
with the outcomes of the analysis, which will then be presented to the VAE
users. Integration will be achieved through an encrypted interface used by
the platform to communicate with CERTH's computational back-end
servers.

. Full web application integration: In this approach, VERIFY's web application
will be adapted to the EVELIXIA users' needs, containerized and integrated
as a separate module of the EVELIXIA platform’s visual interface. To protect
CERTH's IP, the computational back-end used will remain on CERTH'’s
computational cluster, with encrypted communications taking place
between the two applications.

In both cases, the user is initially redirected through EVELIXIA platform to the
designated page. Access to the page is managed through the platform’s SSO
mechanism, which will regulate which user roles have access to the specific
facilities. The remainder of this chapter refers to the potential implementation of
the second integration option (full-web) using VERIFY's current user interface to
provide guidance for further integration activities. It should be noted that, as part
of VERIFY's EVELIXIA adaptation activities, some non-essential elements of the Ul
may be hidden from view to simplify the users’ interaction with the application. In
addition, some parameters/options may be simplified to adapt to the specific
application usage scenarios pertinent to EVELIXIA.
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3.2.2.1. Application entry

The point of entry to the application will be the VERIFY's EVELIXIA dedicated
dashboard (Figure 46) and the user will be prompted to select the "My Buildings"
option (Figure 46, Choice 1). Subsequently entering the VERIFY-B Suite, the user
may add a new building entry (Figure 46,Choice 3). Once created, the building
entry is automatically saved, and the user may review, edit, clone, or delete it at
any given time (Figure 46, Choice 2).
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Figure 46. VERIFY - Dashboard page

When the user selects a listed building entry, a building-specific view is enabled,
displaying all its details and characteristics (Figure 47).
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Figure 47. VERIFY - building-specific view
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3.2.2.2. Building definition

The LCA/LCC analysis in VERIFY-B begins with the building definition. The user is
requested to insert building-level static data necessary for generating the
building model:

e Building attributes: type, outer dimensions, number of floors, floor area &
per facade: glazing area, external wall area, type of glazing, type of
insulation, orientation

e Location details: address, zip code, country, altitude, coordinates

e External factors: temperature set points (winter/summer), occupancy
profiles, cost of energy per energy source type

3.2.2.3. Scenario definition

VERIFY conducts real-time, scenario-based LCA/LCC analyses comparing user-
specific investment scenarios per building entry prior and after the
implementation of EVELIXIA's solutions (Figure 48). The user may create a new
scenario (Figure 48, Choice 2), edit an existing scenario (Figure 48, Choice 1), or
clone an existing scenario to generate a new one in a simplified manner. Upon
creation, each scenario is automatically saved.

Scenarios

CPERI building (330) baseline CPERI building upgrade CPERI Upgrade(330) baseline CPERI building (330) baseline
Do st 2024 5700 A ¢ clone clone IES

1 This scenario was generated automatically TF ? ot 202

upon the Builiding creation

View | | Clone View | | Clone | Delete View | | Clone | Delete View | | Gione | Delete

CPERI Upgrade(330) Upgrade
clone IES

View | £1111 | Clone | Delete

=D | -

Figure 48. VERIFY - Scenario definition

The user may further refine those scenarios by selecting energy efficiency
measures, adjusting system components, and modifying financial assumptions
tailored to user-specific needs and goals. Prior to the LCA/LCC analysis, user can
select which scenarios to include and compare, regardless of the number of

scenarios created (Figure 49).

LCA Analysis
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Figure 49. VERIFY - Scenario selection
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3.2.2.4. Component definition

For each newly added scenario, user has to specify the component information,
both static and dynamic, provided from the list of component groups (Figure 50,
Choice 1). Upon selecting each tabbed group (Figure 50, Choice 2), the user may
insert the relative information (incl. component type, power rating, installation
year, efficiency factors, technical specifications per type, CAPEX and OPEX,
interest rates, usage hours, emission coefficients, etc.).
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Figure 50. VERIFY - Component Tabs

VERIFY’s interoperability is supported by independent messaging protocols and
APIls. The required back-end operations are already in place, which allow seamless
data exchange with third-party data platforms and external systems such as
SCADA, EMS, and BEMS. As soon as the EVELIXIA platform is operational, the
necessary back-end modifications of IS6 will take place to ensure the centralized
and consistent data flow, making use of APl and MQTT-based communication.

The dynamic data per component can be provided through various data streams
(i.e.,, manual entry, API Call, MQTT Queue) and formats (i.e., .csv, .json) via the "Data
Sources" Component Tab (Figure 51). The minimum requirements need
timeseries with at least hourly timespan and spanning over a full calendar year.
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To counter issues of incomplete datasets due to data scarcity, measurements
inaccuracies, technical problems, and sensor sensitivity, VERIFY generates
synthetic data through INTEMA, its internal simulation engine that employs
predictive energy modelling. In case of total absence of data or mere building-
level values provided by the user (e.g., annual energy consumption for connected
grids), INTEMA performs an on-demand disaggregation process, utilizing VERIFY's
LCI to infer detailed, time-resolved data per component (Figure 52).

Figure 51. VERIFY -Data Sources
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Figure 52. VERIFY - Data source info for data disaggregation
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3.2.2.5. LCA/LCC Analysis

The combined model-driven and data-driven approach of IS6 uses physics-based
simulations that incorporate passive features, active systems and environmental
factors and financial information. 1IS6 backend functionality is structured to align
with ISO standards (ISO 14040/14044 for LCA, 1SO 15686-5 for LCC, ISO 16745-1 for
determining and reporting carbon metrics) and EU-wide frameworks (Level(s),
Energy Performance for Building Directive (EPBD)). Based on the detailed, real-
time LCA/LCC analysis of the resulting energy prosumption profile per building via
VERIFY-B, IS6 generates the following KPls:

Environmental
e Lifetime Primary Energy Demand (PED)
e Lifetime Global Warming Potential (GWP)

Economic

Lifecycle Costs (LCQC)

Pay Back Time (PBT)

Levelized Cost of Electricity (LCOE)
Net Present Value (NPV)

Internal Rate of Return (IRR)
Return on Investment (ROI)

The respective definitions, formulas & calculation methods for all the above KPIs
are presented in Annex 6.1.

3.2.2.6. Data Storage, Security & GDPR

VERIFY securely stores all data within CERTH'’s data center, utilizing structured
access protocols to ensure confidentiality and integrity. Data generated within
VERIFY can be exported in multiple formats (e.g.,.csv,json) and made available to
interested partners upon request through EVELIXIA platform. Controlled access to
scenarios will be managed through EVELIXIA's user access control system, with
each user having access to specific buildings and scenarios. The details of the
access rules will be determined during the platform’s integration. VERIFY does
not process personal data subject to GDPR. It exclusively handles non-personal
data related to the energy performance of facilities and their billing
arrangements.

3.2.3. Evaluation & Results

The results of IS6 can be disseminated in three primary formats, depending on
the integration option adopted in EVELIXIA:
e cumulative list & graphs (online)

e exportable time series
e exportable report
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Figure 53. VERIFY - Indicative list of KPIs in the results page

VERIFY's own online results page offers a detailed tabulated list (Figure 53)
alongside dedicated visualization plots (Figure 54). These plots incorporate
cumulative curves that extend over the entire project lifespan, thereby providing a
comprehensive long-term perspective on energy performance, emissions
reductions, and cost evolution. The availability of exportable time series data
further supports detailed post-analysis and integration with other external

analytical tools.
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Figure 54. VERIFY - Indicative resulting plots of KPIs

The evaluation of the IS6 development is conducted through a dual-path test run
(Figure 55) ) to ensure reliability of results, applied to a Case Study for CPERI office
building of the Greek PS. In the first approach, the building's annual energy
consumption is generated from iISCAN module of IS5 - "Building Energy Modelling
and Simulation" (see2.6). This input is uploaded into VERIFY to disaggregate into
component-specific information for both baseline and upgrade scenarios and
calculate the KPIs (iISCAN-approach). Concurrently, the total energy consumption
is also generated internally through INTEMA to disaggregate the building-level
input data into component-level consumption series for each scenario.
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Figure 55. Overview of the dual-path test run for I1S6

The two approaches perform an annual analysis that refers to different calendar
year (2022 for iISCAN-approach and 2023 for INTEMA-approach) due to respective
availability of historical data, resulting in different energy profiles. Moreover,
significant deviations in the estimated annual (total) energy consumption and
minor deviations across KPIs are further attributed to inherent energy modeling
differences in distinct assumptions and computational frameworks employed
between the two simulation engines. However, the comparative analysis
examines the relative difference between the baseline (prior to EVELIXIA), and the
upgrade scenario (following the implementation of EVELIXIA's solutions) of each
approach.

As a distinct parameter for a comparative analysis for the two approaches, the
Lifetime Primary Energy Demand (PED) KPI is selected due to its intuitive and
clear definition as a benchmark to validate the accuracy of the estimations of the
simulated data generated IS5-ISCAN in comparison to the ones retrieved from the
default internal simulation engine (INTEMA). This comparison is limited for the
purposes of the initial test run, as no further calibration process is integrated into
the tool. During implementation dynamic data will be sourced either directly from
the EVELIXIA platform or via the IS5-ISCAN in case of simulated/synthetic data.
PED is calculated using the following formula:

N
Lpg = Ipp + Z(OI[%)
i=1
Where:
Lpg is the Lifetime PE Demand of the project;

Ipg is the Infrastructure (embodied) PE Demand,;

O}[fg is the Operational PE demand of the building’'s components in year i.

The resulting values for PED between approaches (Figure 56) demonstrate a high
degree of qualitative alignment, while quantitatively remaining within the same
order of magnitude (39% difference), indicating a similar data handling and
processing functions. The same outcome applies to all KPlIs, based the range of
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the deviation of their relative difference, resulting in 0.9%-1.21% deviation for
Environmental KPIs and a 26.19% difference in for Cost Savings (more sensitive to
the total energy consumption by definition, yet correlated with the difference in
PED). These results reveal that the KPI values reveal a consistent pattern in both
approaches, regardless of the original input. A comprehensive tabulation of the
cumulative results across KPIs, covering both scenarios for each approach, and
the relative differences and deviations are presented in Annex 6.1.

’f N " ™\
") Annual Primary Energy Demand (kWh) (*) Annual Primary Energy Demand (kWh)
B CPER building (330) baseline done ES B g R sl
PERI Upgrade(330) Upgrade clone IS B CHFER! Upgradei330) basetne cloce
120 104

= e T 80 2111
E 0 s EC L
= [ ‘ 1 3 g L1 | Si3 %
3 3% & . e 2
Z w© ss3 = 3
. R e T 20 826 3
B m 23 2

F_;: y > ,\ 1 > . :;'. '\_;: ) ’} r s _";_'. D _\ 5 \';x o O D D }_:. &

FPEEFTTFTELF 4 FFEFFTFTIFEFS

Year Year

Figure 56. Lifetime Primary Energy Demand for the baseline scenario
(left: iISCAN-approach, right: INTEMA-approach)

3.2.4. Next Steps

In the forthcoming phase of the EVELIXIA project until M24, the following key
advancements and initiatives pertaining to IS6 are underway:

Static Data Collection for Energy Models: Static data will be systematically
collected for all buildings across all EVELIXIA Pilot Sites (PS) to support the
development of accurate energy models. In close collaboration with T4.2,
T5.2, WP4, and WP5 Leaders, PS managers will be iteratively engaged to
provide all necessary static building information for building model
generation within 1S6 and discuss mitigation strategies for potential data
shortages, thereby ensuring data integrity and enhancing model reliability.

Interconnection with the EVELIXIA Platform: In parallel with the
upcoming deployment and integration of EVELIXIA's platform,
CERTH/CPERI will work closely with the relevant task leaders to establish a)
an automated dynamic data exchange mechanism via API, eliminating the
need for human intervention, enhancing communication reliability and
enabling real-time calculations that are essential for dynamic system
performance, and b) the re-direction process to the dedicated domain of
VERIFY through EVELIXIA platform in the case of the full-web integration,
solidifying the accessibility of the solution
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The collective work performed thus far, together with the planned actions in the
months to come, delineate the roadmap for delivering an advanced tool designed
to support building-level investment strategies that cater to project-specific
targets. IS6 underpins the development of multi-utility services and viable,
adaptive investment strategies, ultimately contributing to the enhancement of
the Autonomous Building Digital Twin with self-decision-making capabilities.

3.3. SRI Advisor (1S7)

The SRI Advisor tool (SRIA) aims to provide tailored recommmendations on how to
improve the SRI class of a building. Rather than a “push-button” tool delivering
automated recommendations, the SRIA is intended to be a decision-support tool
determining a short list of the most cost-effective smartness upgrades adapted to
the building and its owner’s priorities. This list should be critically analyzed by the
user of the tool (SRI assessor) before being discussed with their client (building
owner or manager). The final recommendations to be implemented in the
building will then be co-designed with the client. The tool includes the following
components as showed in Figure 56:
1) A questionnaire to understand building characteristics and its owner's
priorities,
2) An SRI calculation engine using the building features,
3) A cost database gathering all the possible smartness upgrades' CAPEX and
OPEX,
4) An optimization engine determining the most cost-effective smartness
upgrades adapted to the building features and the owner's priorities,
5) An interactive interface presenting the short list of the most cost-efficient
smartness upgrades, among which the user can select the preferred ones.

Cost database

Figure 57. SRIA Components Diagram

At this stage of the project, the methodology is fully developed (including the user
questionnaire), the cost database is partially populated, and the development of
the optimization engine and interactive interface has started.
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3.3.1. Objectives

The SRIA tool advances the state of the art by supporting users in prioritizing
actions to improve their SRI score in a cost-efficient manner. SRIA simplifies the
optimization calculations, providing clear recommendations to building owners.
The cost database within the tool gives assessors a clear view of upgrade package
prices in different regions, so they can suggest reliable estimates.
In comparison with state-of-the-art solutions such as easySRI Technical and
Financial indicators for SRT' and SRI-ENACT Decision support tool for supporting
decisions regarding the smart-ready upgrades?, SRIA brings the following
advances:
e SRIA includes data for the 56 SRI services defined in the generic SRI
technical framework (method A and method B),
e SRIA's cost database covers 30 countries (EU27 + Norway, Switzerland and
United Kingdom),
e SRIA covers the whole SRI scope (7 impact criteria), not limited to energy
savings,
e SRIA considers real building characteristics and user preferences.

3.3.2. Methodology

e The building features needed to determine which smart-
auestionnaire | ready services apply to the building. For instance, if the building
has no cooling system, the services included in the cooling domain
s are not applicable and do not need to be assessed by the SRI
engine. Similarly, if the heating system of the building counts one
prioritws single gas boiler, the services related to heat pumps are not
applicable, as well as the service related to sequencing in the case
of different heat generators.

e The building features needed to determine the cost of smartness
upgrades. For instance, the number of air-handling units will determine
the cost of upgrading the ventilation system of the building; the number of
rooms in the building will determine the cost of installing occupation
detection sensors; the number of windows will determine the cost of
upgrading the building envelop systems; etc.

e Users' preferences in terms of smartness ambition and perspective.
Some building owners may want to level up the SRI class of their building
by one, and others by two or more letters. Some may consider the SRI score
overall, while others may want to improve more particularly one of the
three key functionalities addressed by the SRI. If the user selects no specific
preferences, by default the SRIA tool will propose users to level up the
overall SRI score by one class at the lowest possible price.

The full guestionnaire can be found in IS7 Annex 1 - SRIA guestionnaire.

n@ A single questionnaire is developed to collect at once:

User
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i SRIA is equipped with a SRI calculation engine, developed

% according to the updated SRI calculation methodology (V4.5), to

SRicalculation | help the end user calculate the SRI score of the existing building. It
engine R . .

makes use of the building features needed to determine which

smart-ready services apply to the building, collected in the previously mentioned

guestionnaire. Based on the functionality level of each service, it calculates the SRI

score of the building and the detailed scoring matrix.

= The unit cost of smartness upgrades is needed for each smart-ready
= service and each functionality level (e.g., cost of installing

thermostatic valves and cost of motorizing blinds). Within the
generic SRI technical framework3, there are 178 pairs [service,
upgrade] to be considered (56 services, multiplied by 2, 3, or 4
possible upgrades, depending on the number of functionality levels). For each of
these 178 pairs, 3 cost components must be identified, the first two forming the
CAPEX and the third one corresponding to the yearly OPEX:

e average price of the products enabling the upgrade,

e cost of the corresponding installation service, and

e insome cases, yearly operational and maintenance costs.

These cost components should be adapted to each of the 30 countries targeted
by the tool. Therefore, in total, the cost database to be built should have a size of
16,020 cost items, which need to be identified (178 x 3 x 30).

The following choices are adopted to reduce the size of the cost database:

e Single upgrades enabling levelling up the functionality level of several
services: In practice, a single intervention can allow upgrading at once the
functionality level of several services, typically those related to heating and
cooling, or those associated with the presence of occupancy sensors. In this
way, from the initial list of 178 pairs [service, upgrade], 33 pairs can be
discounted. The list of upgrades considered by the SRIA tool, their links
with smart-ready services functionality levels and the type of professionals
needed to implement each action can be found in IS7 Annex 2 - Example of
smartness upgrades implemented in the SRIA.

e Geographical differentiation of installation service cost vs. single
product cost. Most products needed to upgrade smart-ready services are
available at the EU level from international manufacturers and distributors.
Therefore, in the cost database, for each product only one price is
considered, applying to our 30 countries. National differences (e.g., taxes)
are neglected. By contrast, the cost for the installation services of these
devices is obviously different from one country to another. In order to build
a consistent database, it has been decided to estimate this cost as follows:

Cost database

Estimated number of

. Number of devices to Average hourly rate of a
hours needed to install the x . . ?
.. . be installed professional installer
device in question
(same value for all buildings (depends on the (depends on each country)
and all countries) building'’s

characteristics)
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Therefore, only the average hourly rate of a professional installer must be
identified for each country. An estimation of these rates per country is
calculated by using an average rate for a given country (e.g., France, where
the R2M team is located), and by multiplying it with a country coefficient
based on the average GDP per capita in order to derive hourly rates in the
other countries.

e Yearly operational costs: As OPEX are not expected to be very significant, a
flat OPEX rate is applied by default, corresponding to 5% of the CAPEX. In
specific cases, for which OPEX are expected to be more expensive, specific
research is conducted to identify the corresponding value.

e Low-impact upgrades: As demonstrated by a sensitivity analysis (see
below), upgrading some services has a very low impact on the SRI score.
Therefore, these upgrades are very unlikely to be short-listed by the SRIA,
whatever their actual cost is. As a result, resources may not be wasted in
assessing their cost with precision.

Concerning the data sources for the cost database, a combination of different
sources is used to populate the cost database reliably: (i) desk research, (ii)
collecting input from EVELIXIA's partners and (iii) conducting interviews with
external market experts.

n Starting from the SRI assessment of a building, the optimization
' % engine seeks to identify, amongst all possible upgrades, the ones
optimisation |~ Which have the lowest cost per % of improvement of the SRI score.

angios In mathematical terms, the function F to be minimized is the
following:
N C,
P & _ 2"=1 (1+r)" + Co
T SRI s — SRI ;
Where:

o C is the total cost of an action aiming at improving the SRI score, with
the following parameters:

. N represents the number of years during which the calculation
applies; it can typically be the lifespan of the investment (e.g., 20
years);

° r represents a discount rate used to determine the present value of
future cash flows (e.g., 3%);

o Cn represents the yearly costs in year n of the action (e.g., yearly
operational expenditures or OPEX);

. Co represents the cost of the initial investment (e.g., capital
expenditure or CAPEX).

o | is the impact of this action on the SRI score expressed in percentage,
calculated as the difference between the SRI score after this action is
implemented (SRIf) and the initial SRI score (SRI).

The calculation should be run several times to identify the optimal upgrades one
by one to establish a short list of the most cost-efficient upgrades.
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The outcomes of the tool include (see Figure 57):
=R .

Interactive

A short-list of upgrades, sorted by increasing order of
their cost per % of improvement on the SRI score (most cost-
efficient actions first). Via an interactive interface, the SRIA user (SRI
assessor) should be able to choose the actions they wish to include in
the upgrade package proposed to their client (the building owner or
manager) to level up the SRI score of their building by one class. They
may choose, if relevant in a specific situation, to skip an action even
though it is in theory more cost-efficient than the next one.

. For each upgrade, their cost and their impact on the SRI score.

° The overall resulting SRI score, sub-scores per key functionality,
impact criterion and technical domain, and the detailed scoring
matrix.

. An invitation to simulate different scenarios, such as more
ambitious upgrade packages (e.g. to level up the SRI score by two
classes), or the focus on one of the three key functionalities of the SRI.

| |

(" Recommended upgrades to level up the overall SR score by one class

Back to buliding
characteristics

Back to SRt

Suiiding assessment

Myhousa

P SRS, Current building With the selected
7 - Cost | Impact Cost/%| Select state upgrades
Action 1 Inatall XXX S000€ | +6% #33¢ x
Action 2 Replace XX by YY  3000€  +3%  1,000€ x . ‘
Action 3 Impsement 22 A000€| +3% 1332¢€ i F ‘ .
|Action 4 |[mprernant XY 5500€| +4% 1375€ x|
|Action 5 Replace X by Y 4.000€ | +2% 2000€ \
= (¥ sy (o
A Impact on impact on iy - 2% "
Toust cons SRI score SRI class B . t el
(R) oo
13,500€ | +13% J| +1 =m RISE (s wmiemmg e

l Sec dotailed SRI scoring matrix I J

Selection of other possible upgrades

~

Level up the SRI
score by two classes

! ’. Focus on efficiency | ﬂ | Focus on occupamt
\

( i" Focus on flexibility

[

Figure 58. SRIA output mockup

3.3.3. Evaluation & Results

The complete SRIA tool, being still under development, has not been tested yet.
However, a preliminary step has been achieved concerning the SRI calculation
itself: a calculation structure has been designed to highlight the impact on the
SRI score of the upgrade of each service by one level, which the usual
calculation sheet* does not allow. This structure is fully in line with the description
of the SRI calculation steps in Annex | of the Commission Delegated Regulation
(EU) 2020/2155. As a result, a percentage is associated to each pair [service,

upgrade].
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As illustrated at the Table 2, different shades of green allow quickly identifying the
upgrades that have the higher impact; and in the last column, different shades of
pink allow identifying the most impactful services (assuming the starting point is
level O for all services, and the end point the smartest level). In this example, the
three services with the most significant impact on the overall SRI score are H-1C
“Storage and shifting of thermal energy” (10.4%), H-1la “Heat emission control”
(8.6%) and MC-25 “Smart Grid Integration” (8.5%).

Table 2. Impact of each service upgrade for a residential building in Northern
Europe, with a single boiler for heating, and no cooling system; assessment with
method A; interest in the impact on the overall SRI score

Apphicabinty SRI score upgrade i service
eccordingto | p o nain is improved from level 0 to the
. °"“‘""'w smartest fevel
Haating = :
Haating F 3,8%
Not applicatis Heating
feating 6.6%
Not appicabls Domestic
Damestic 53%
Damestic 2,3%
Not applicable Cooling
Not appiicable Cooling
Mot appicable Cooing
Not appicable Coolng
Ventilaton 7.2%
Ventilaton 5.0%
L Lighting 2,2%
| - [Oymamic 56%
| |Dymamic 1.5%
Electricity 2,9%
Electicity 7A4%
Electricily 2,9%
Electricity |E-12 , 4,0%
| 9 : g v 0,6%
| 3.5%
i Lo LIS == i 5 = eVV=m 1,7%
Monforing |MC-13  |Central reporting 1.8% 1,8% 6,3%
[Montorng [MC-25  [Smart Grid 37% 8,5%
[Monioring MC-30  |Singie platiorm 1,2% 1,2% 3,7%

The list of most impactful service upgrades mentioned in the previous example
and the corresponding impact on the SRI score depend on each building. For a
different climate zone, a different building type and different settings in terms of
applicable services, the ranking of impactful upgrades will be different. However,
it is likely that upgrading some services will be impactful in all cases; and
upgrading some others might have a very little impact in all cases. This is why a
sensitivity analysis has been conducted.

To do so, to always consider the same list of services, all services from the
catalogue A or B are considered applicable (which is a virtual situation, as some
services are mutually exclusive). The corresponding impacts of each service
upgrade from O to the next level, up to the smartest ones is considered for 40
cases, each case being defined by: (1) The focus chosen by the user (4
possibilities): Impact on overall SRI score, or impact on one of the three key
functionalities (efficiency, occupant, flexibility); (2)The building type (2
possibilities): residential or non-residential; (3) The climate zone (5 possibilities):
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Northern Europe (NE), Western Europe (WE), Southern Europe (SE), North-Eastern
Europe (NEE) or South-Eastern Europe (SEE).

e Concerning method A (simplified service catalogue), upgrading services
H-1a, H-2b, V-1a and MC-13 from O to the smartest level always have a high
impact, for all climate zones and building types. Upgrading services H-1c, H-
3, C-4 and MC-25 from O to the smartest level also have high impact in most
cases. By contrast, upgrading services L-1a, DE-4, EV-15, EV-16 and EV-17
from O to the smartest level always have a very low impact on the overall
SRI score, for all climate zones and all building types, even more so for
incremental upgrades from level O to level 1, level 1to level 2, etc. As a result,
it is quite unlikely that upgrading these services will be advised to level up
the overall SRI score - except if all other services already score very high or if
these upgrades prove to be extremely cheap.

e Concerning method B (detailed service catalogue), the list of service
upgrades with the highest impact is also quite stable. Indeed, upgrading
from O to the smartest level the services H-1a, H-2b, H-2d, H-3 and H-4 in
the heating domain, and MC-3, MC-4, MC-9 and MC-13 in the monitoring &
control domain, always have a high impact, for all climate zones and
building types. Upgrading services H-1Tb and H-1f from O to the smartest
level also have high impact in most cases. By contrast, upgrading services
H-1c, H-1d, H-23, C-1¢c, C-1d, C-1f, C-2a, C-2b, C-3, V-Ic, L-1a, DE-2, DE-4, EV-15,
EV-16 and EV-17 always have a very low impact (< 1%) on the overall SRI
score, for all climate zones and all building types. As a result, it is quite
unlikely that upgrading these services will be advised to level up the overall
SRI score - except if all other services already score very high or if these
upgrades prove to be extremely cheap. Finally, there is a significant
difference in the impact of upgrading services in the electricity domain
depending on the building type (residential or non-residential).

The detailed results of the sensitivity analysis are presented in IS7 Annex 3 -
Sensitivity analysis for the SRIA.

Concerning the evaluation of the performance of the SRIA tool, the following
indicators will be used:

e Average number of actions listed to level up the SRI class by one,

e Average number of professionals needed to level up the SRI class by one,

e Average cost efficiency of the proposed upgrade package to level up the
SRI class by one (unit: €/ sgm / % of SRI score increase).

In addition, the following aspects will be assessed:

e User-friendless, evaluated using the System Usability Scale (SUS) score,

described in the D1.5.

3.3.4. Next Steps

The development of the first prototype of the SRIA tool will be implemented
according to the following schedule:

e The development of the functionality for calculating the SRI score upgrade
per functionality level includes the creation of a dataset indicating the
upgrade impact per case, as well as the implementation of filtering
algorithms and tool features to guide the end user toward the most
optimal actions. A first complete version of the above is expected by M20.
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e |n parallel, the calculation of costs per recommendation requires both the
development of the cost database and the implementation of functions to
enable cost estimation based on building characteristics. Both
functionalities are expected to be completed by M22. The cost database will
be periodically updated with data related to technical equipment and labor
costs, as this is an ongoing task that will continue until the end of Task 4.2
(M34).

e The user interface is a key component, reflecting the core functionalities of
the tool's engine. Therefore, its development will proceed in parallel with
the back-end development. A first version is expected by M22 and will be
periodically updated in line with progress on the core functionalities.

e The testing phase will begin after M22, during which the SRIA tool
prototype will undergo thorough testing by R2M. Feedback loops will be
established with CERTH's development team to ensure iterative
improvements. Testing will cover a variety of building types, ranging from
simple to complex, culminating in the evaluation of the tool at the
EVELIXIA pilot sites in Spain and Denmark.

3.4. Proactive Demand Planning (IS9)

Energy demand in buildings has steadily increased over the years, necessitating
advanced strategies to ensure energy efficiency and cost savings while
maintaining user comfort. Proactive demand planning plays a crucial role in
balancing electricity consumption, mitigating demand peaks, and optimizing
energy usage in a way that benefits both end-users and energy providers. By
strategically shaping energy demand ahead of time, buildings can reduce
dependency on costly peak-hour electricity, enhance renewable energy
integration by promoting self-consumption, and contribute to grid stability.
Additionally, maintaining thermal comfort can be achieved by leveraging user-
defined preferences or extrapolating historical comfort behavior, ensuring that
demand adjustments align with occupant needs.

The proactive demand planning service (IS9) is designed to reshape day-ahead
electricity demand providing user-based recommendations, ensuring an
optimized balance between energy savings and user comfort. The tool will be
responsible to reshape the aggregated building demand for the day-ahead, based
on i) the different expected OPEX from multiple cross-vector energy systems'
operating conditions (e.g., boilers, multiple type of heat pumps, solar thermal
collectors, PVs and storage technologies), ii) the forecasted energy prices
(historical data retrieved from relevant databases e.g., ENTSO-E APIs), iii) the
forecasted aggregated demand flexibility (considering convenience) - based on
the Flex Forecaster module output, and iv) the forecasted local RES/storage
profiles; iv) the selected user comfort preferences; Unlike traditional demand
response methods that react to grid signals, this approach anticipates energy
needs and adjusts consumption patterns accordingly. This enables buildings to
shift demand intelligently, avoiding high-cost periods and reducing unnecessary
energy expenditure while sustaining indoor thermal comfort levels. A key
component of this service is its ability to evaluate cost-benefit trade-offs at the
building level. By leveraging cost-benefit matrices, the system ensures that
energy efficiency measures do not compromise user satisfaction or operational
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needs. This approach fosters a more resilient and adaptive energy management
strategy, making buildings not just passive consumers, but active participants in
energy optimization.

3.4.1.0bjectives

The main objectives of IS9 within the EVELIXIA context are:

e Sustaining thermal comfort for building occupants while reshaping
electricity demand.

e Maximizing energy efficiency by leveraging flexibility in electricity
consumption.

e Reducing monetary costs by avoiding peak-hour electricity charges and
optimizing energy usage.

e Enhancing the integration of renewable energy sources by aligning
demand with availability.

e Encapsulating and providing cost-benefit evaluations to ensure optimal
trade-offs between cost savings and comfort.

e Alleviate the optimization problem by incorporating cost-benefit matrices
while also enhancing the transparency and interpretability elements of the
adopted intelligent solution.

These objectives aim to establish a proactive, cost-effective, and user-centric
energy demand planning service at building level, ensuring that energy savings
do not come at the expense of occupant well-being.

3.4.2. Methodology

IS9 considers the development of a proactive demand planning service,
responsible for day-ahead demand reshaping based on novel episodic RL
methods by CERTH and cost-benefit matrices by UNIGE to enable energy cost-
savings without jeopardizing energy efficiency at building level.

3.4.2.1. Cost benefit matrices

The Cost/Benefit Matrices are built to summarize and easily represent the cost
associated to the operational expenditure including the effect of flexibility
margins on the real components off-design performance in order to provide the
RL agent with thermodynamically accurate information including non-linear
ones. Moreover, those matrixes can be used for an easy representation of the cost,
that after the RL agent execution can be used for debug and verification by not
expert, providing an element of transparency of the calculation, increasing the
user acceptance. An example of off-design behavior, that should be taken into
account when solving the optimization, is related to the HVAC systems as
function of two parameters: ambient temperature and relative load, is presented
in Figure 59.

In order to implement the cost Benefit Matrices two kind inputs are required daily
internal and external:

Internal: Cost Optimized Base Line [1,24] from IS3 and Updated Flex Constraints
[2,24] from IS4 (i.e. the vectors of hourly f;?and f4°%". Those values are fitted
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stuxm

within a [2n+1,24] constant size matrix, created by dividing the admissible load
variation into the same number of n points for both flexibility directions and made
non dimensional based on the BL value. So for each hour the existence space of
admissible solution will be, expressed as with Matlab syntax:

Relative COP vs Part Load Percentage

corl
/
ma.

Delta Ternperature LIft [°C] Part Woad rata |%

Figure 59. Example of the effect of temperature lift (left) and relative load (right) on
the Coefficient of Performance of a Heat Pump

(P -BL) (BL-f") BL=f™),
[ =——:BL; BL + ——t—=:——-=f*"]/.BL

This matrix of investigated space is then reflected into the output effect evaluated
as the super position of the effect of the m-th appliances (e.g. HVAC, White Goods)
that are involved in the optimization. The results matrixes provides: efficiency
values, consumption effect as energy (kWh) or expenditure (€), and
environmental impact as CO, Emissions. The effect of each element remain
available for future investigation.

External: Price tariffs (time series). These are the energy consumption prices for
each country based on the Entsoe API, which are better discussed in the next
paragraph.

3.4.2.2. Day-Ahead Retail Energy Prices

Implicit Demand-Side Flexibility depends on the access of customers to market-
related retail pricing. Electricity retailers, including default providers, should offer
price plans that allow consumers to choose hourly, or where applicable shorter
time-interval pricing, that reflect the actual market conditions and create
incentives for consumers to align their demand with system conditions.
According to [10], in 2019, only eight countries have implemented dynamic
electricity prices: Denmark, Estonia, Finland, Norway, Spain, Sweden, The
Netherlands and The United Kingdom. However, Directive (EU) 2019/944 of 5 June
2019, on common rules for the internal market for electricity and amending
Directive 2012/27/EU, introduces new provisions that entitle all final customers
who have a smart meter installed to conclude a dynamic electricity price contract
so a wide application is expected.

Actual analyses rely on Electricity Wholesale price, as retrieved day ahead from
ENTOSE via API. This represents a pure dynamic price where no impact of fixed
mark-up or cost and proportional taxation (i.e., VAT) is present. The first element
increases the average price without affecting the distance among peak and valley
prices. This reduces the percentage impact of the savings with respect to the
whole energy cost. The latter effect, a proportional increase, even maintaining the
same average price of electricity, increases the absolute difference between peak
and off-peak energy prices, magnifying the impact of Implicit Demand-Side
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Flexibility including the usage of Storage. For this reason, the data of Eurostat
based on semester excluding and including taxes and levies were retrieved to
setup the scenario analysis for different EU countries.

3.4.2.3. Proactive Demand Planning using RL

A Markov Decision Process (MDP) is a mathematical framework for decision-
making under uncertainty, where an agent interacts with an environment to
maximize cumulative rewards. An MDP is defined by the tuple M=
(S,A,P,R,y),where S is the state space representing all possible states of the
environment; 4 is the action space representing the set of all possible actions an
agent can take; P(s'|s,a)is the transition probability function, defining the
probability of moving from state s to state s’ given action «; R(s,a) is the reward
function, which gives a numerical reward for taking actiona in state s;y € [0,1]is
the discount factor, which determines the importance of future rewards; At each
timestep t, the agent: observes a state s; € S, then selects an action a, € Aand
based on that action receives a reward r; = R(s;, a;) and finaly transitions to a new
state s;41 ~ P(s' | s;,a;). The agent’s goal is to learn a policy w(als) that maximizes
the expected cumulative reward J () = E[X 2, ¥ R(ss, ap)].

The state space consists of all relevant variables that define the current status of
the environment and for the energy management problem, the state space is
given by the following state vectors, =[P, By U; Dy Pry1 Peyz -+ Peyzs RDy,
where P; is the electricity price at time t, B; is the baseline consumption at given
time t, U; and D; are the upper and lower flexibility bounds respectively defining
the acceptable consumption ranges sustaining thermal comfort preferences,
P:11.t424 @re the price predictions within the day since those values are available
under a day ahead pricing concept and RD, defines the remaining energy
demand to be balanced offering the residual of pre and post demand
management operation or the residual between the recommended
decision/action and the baseline consumption profile as an alternative conceptual
representation of energy balance. Note that all states are normalized. From the
action space point of view, the action space defines the possible decisions the
agent can make and for the energy optimization problem, the action a; is the
recommended energy consumption profile at each timestep such that
a; € Rwhich is the normalized adjustment to energy consumption, i.e.,a; € [0,1]and
the action should be preferably bounded by flexibility constraints to sustain
thermal comfort.

The reward function describes the defined objectives of the under-examination
problem and its simplest form encapsulates thermal comfort and monetary cost
as follows: reward = —{a - Energy + B - Cost} which practically unfolds the inherent
trade-off between energy consumption and electricity bill through the two
weighting factors. After exploring and evaluating different policies, the reward
function is designed to incorporate a set of individual objectives like monetary
cost reduction, residual demand minimization and maximization of flexibility
bounds satisfaction:
R(st, at) = Rresiauai(St» a¢) + Reost (St at)+Rflex(Str as)

where the first penalty term is given by:
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where parl and par2 are penalty factors and this term penalizes any residual
energy balance at the end of the day, so t in this case is the final time step of the
day, i.e., T®=23. Residual demand at time t, denoted as RD,, represents the
difference between the baseline energy consumption and the energy action
taken by the agent and it is given by: RD, = RD; + B; — a;. In respect to the second
penalization order, its form is given by:

3 %_mzp>1ZP
par ?20 Bt It 6 k

2

ar— U .

par4 - (T) ,otherwise
t=0 Bt

where parl and par2 are still design parameters and this penalty term prompts
the agent to consume the least amount of energy if current price is higher than
the expected one in the near future intraday (mean of next 6 hours), otherwise
produces a recommendation closer to the upper flexibility bound to extrapolate
the lower current price in respect to the expected one within the predefined
horizon. Note that the horizon is also a design parameter and in practice affects
the response speed of the agent since the price profile of the day based on the
possible fluctuations formulate this behaviour. Carefully adjustment is needed for
the future implementations and it is possible to have different horizons for
individual inter-country cases based on the trends that emerge in different
regions. Regarding the third penalty term:

U 2
p 5 : : a, > U
aro - )

ZE_EOBt ‘ ‘

Rflex(st' at) = a; — Dt 2
par6 - (m> ,ar < Dy
0,D, < a, < U,
where again par5 and par6 are design parameters. Note that the similarity in the
mathematical formulation of Ryye (s, ar)and Reex(se, ap) arises from the shared
principle of penalizing deviations from an optimal energy consumption level.
However, each term serves a distinct purpose in guiding the agent’s decision-
making:
1. Re.ost (St ar) — Incentivizing Cost-Efficient Energy Consumption

o This term encourages the agent to adjust its consumption based
on predicted price trends.

o If the current price is high compared to the expected average over
the next six hours, the agent is penalized for consuming too much
and should reduce consumption (closer to D,).

o If the current price is low, the agent is encouraged to consume
more (closer to U;) to exploit the economic benefit of lower electricity
costs.

o The penalty is quadratic, meaning larger deviations from the
suggested optimal consumption result in greater penalties.
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2. Rfiex (st ar)- Ensuring Flexibility Constraints Are Respected

o While Rgys(ss ap) incentivizes energy consumption adjustments
based on pricing, Rex(s:, a.) enforces physical and operational
constraints.

o The agent is penalized if it exceeds the upper bound U;or falls
below the lower bound D; like adding an extra layer of penalization
to guarantee that the agent will deviate within the preferred thermal
comfort bounds.

o This term ensures that energy recommmendations are feasible and
do not violate thermal comfort preferences or grid constraints.

o The quadratic penalty formm acts as a strict deterrent, reinforcing
adherence to operational boundaries.

3.4.3. Evaluation & Results

In order to evaluate the performance of the proactive demand planning tool that
is formulated using Reinforcement Learning, we utilised data from the Greek pilot
as a proof-of-concept. More specifically, 5 consecutive days were used for training
the adopted methodology and 1 day for testing. The under-examination period
concerns heating-demand season with similar energy demands for the
considered building. Figure 60 presents the resulted performance of the proactive
demand planning tool for an indicative day in a day-ahead setting. Notations of
Baseline, Up and Down denote the predictions of baseline energy consumption
and the corresponding flexibility bounds respectively. Note that these serve as
input variables (states) for the RL formulated agent (in this example, those are
simulated trajectories but eventually they will be the direct predictions given by
IS3 and IS4 after integration part is done) alongside the pricing profile that is
provided daily before midnight for the next day in country-level electricity
markets. At later stages, the pricing profile will be formulated to be closer to the
retail price that customers pay in electricity bills. However, even with the Entso-e
day-ahead included prices, the rationale remains valid in demonstrating the
functionalities of the developed tool. As it can be observed, the agent (Decision)
provides a trajectory which recommends higher energy consumption during
lower pricing periods of the day. Three primal metrics are measured in order to
assess the energy efficiency consumption (this is the residual demand that shows
the deviation of the total energy consumed for the day between decision and
baseline), cost (this is the monetary cost as a direct projection of the electricity bill)
and the thermal comfort deviation (this is to show how much is the thermal
comfort penalization). Table 3 shows the percentage difference between baseline
energy consumption and the decision recommendation produced by the RL
agent. Basically, the agent produced a day-ahead trajectory that consumes 1.31%
less energy and 2.51% less costly in terms of Euros compared to the baseline.
Lastly, there was penalization on thermal comfort bounds.
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Figure 60. Proactive demand planning performance for an indicative day

Table 3. Resulted performance in terms of energy, cost and convenience metrics

1.31% \ 2.51% 0%

3.4.4. Next Steps

Building upon the current implementation of the Proactive Demand Planning
tool, the next phase of development will focus on refining and expanding its
capabilities to enhance decision-making, optimize trade-offs, and improve real-
world applicability. The key directions for future work include:

e Reward Function Reformulation: The current reward function balances
residual energy minimization, cost reduction, and flexibility satisfaction. To
further refine decision-making, we will explore alternative weighting
schemes that enable dynamic trade-offs among these objectives. This will
allow for scenario-specific adaptations where energy efficiency, monetary
savings, or thermal comfort constraints may take priority depending on
user preferences, energy market conditions, or operational requirements.

e Integration of Additional Pilot Data: The current evaluation relies on data
from the Greek pilot. Moving forward, we will incorporate data from other
pilots, particularly leveraging simulation models from IS5, to assess the
generalizability and adaptability of the RL approach across different
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building types, climate conditions, and energy market structures. This will
support the validation of the methodology across diverse scenarios.

e Modification of RL with Cost-Benefit Matrices: To enhance transparency
and decision interpretability, we plan to integrate cost-benefit matrices into
the RL framework. This will provide a structured way to quantify trade-offs
between energy efficiency, cost savings, and thermal comfort deviation,
ensuring that optimization objectives align with stakeholder priorities.

o Utilization of Real-World Data: While the current study relies on simulated
trajectories, future iterations will incorporate real-world operational data
from pilot buildings. This transition to real data will refine the RL agent's
performance by capturing realistic variability in energy consumption,
pricing fluctuations, and user preferences. It will also enable a more
accurate assessment of practical implementation challenges.

« Integration with Task 4.6: The next phase will also focus on integrating the
proactive demand planning tool within the broader framework of Task 4.6
(Integrated B2G and G2B Services Layer), ensuring alignment with the
overarching energy management strategies.

These advancements will further strengthen the proactive demand planning
methodology, making it more robust, adaptive, and suitable for real-world
deployment.

3.5. Continuous Energy Performance Management (IS10)

3.5.1. Continuous Energy Performance Management (IS10a)

Modern buildings consume a significant portion of global energy, with heating,
ventilation, and air conditioning (HVAC) systems being among the primary
contributors. Achieving an optimal balance between energy efficiency, user
comfort, and operational convenience remains a challenge due to the dynamic
nature of building environments. Factors such as fluctuating occupancy patterns,
external weather conditions, and varying user preferences make traditional rule-
based or model-based control strategies less effective in real-world settings. To
address these limitations, advanced control techniques that can adapt and
optimize energy performance in real-time are essential.

The Continuous Energy Performance Manager Service (IS10) is designed to
enhance building operations by implementing data-driven control strategies that
optimize energy consumption while ensuring occupant comfort. By leveraging
black-box policy optimization, the system learns from historical and real-time data
to make intelligent control decisions without requiring an explicit physical model
of the building. This approach enables a more flexible and scalable solution that
can be deployed across diverse building types and configurations. Through
automated adaptation, the system can continuously improve performance,
reducing energy waste and operational costs while maintaining a high level of
indoor environmental quality.
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3.5.1.1. Objectives

The main objectives of 1S10.a within the EVELIXIA context are:

e Optimizing building operations by implementing intelligent control
strategies that enhance energy efficiency while maintaining user comfort.

e Employing black-box policy optimization to enable adaptive and self-
learning control, reducing reliance on explicit physical models and
improving scalability across diverse buildings.

e Minimizing energy consumption and operational costs by dynamically
adjusting system settings in response to real-time conditions and external
factors such as occupancy and weather variations.

e Integrating data-driven decision-making by leveraging real-time sensor
data and historical trends to continuously refine control strategies and
improve system performance.

e Supporting renewable energy integration by aligning energy consumption
with the availability of on-site and grid-supplied renewable sources,
maximizing self-consumption and reducing grid dependency.

These objectives aim to establish a proactive, self-adaptive, and cost-effective
energy management service that ensures efficiency, comfort, and sustainability
while reducing operational complexity in building systems.

3.5.1.2. Methodology

The Continuous Energy Performance Manager Service (IS10.a) utilizes a Black-Box
Model Predictive Control (MPC) framework to optimize building system
operations while balancing energy efficiency, user comfort, and convenience.
Instead of relying on explicit physics-based models, ISI0 employs a neural
network-based system model trained on historical and real-time building data to
predict future states, such as indoor temperature and energy consumption. These
predictions allow the system to optimize control actions over a finite prediction
horizon, ensuring proactive and adaptive decision-making. This enables an
adaptive control strategy that accounts for uncertainties and complex building
dynamics without requiring a manually developed mathematical model.

At each time step, the MPC controller collects the current state estimate from an
estimator, which filters sensor measurements and handles missing data. The
neural network model then forecasts the system’s evolution based on the applied
control inputs and external disturbances (e.g., weather conditions, occupancy). An
optimization solver computes the optimal sequence of control actions while
respecting system constraints, such as comfort limits and actuator restrictions.
Only the first control action is applied, and the process repeats in a receding
horizon fashion. This approach enables real-time adjustments to varying
conditions, ensuring energy-efficient building operations while maintaining user-
defined comfort preferences.

More specifically, the methodology follows a receding horizon control approach,
as illustrated in Figure 61, where:

e Sensor measurements from the building (e.g., indoor temperature, energy
consumption) are processed by an estimator to remove noise and handle
missing data.

e The neural network model predicts the next system state based on current
conditions, disturbances (e.g., weather, occupancy), and control inputs:
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Xi+1 = fo Xk, Uk, di)
where % is the estimated state, u,is the control action, d; represents the external
disturbances like weather conditions and occupancy profiles and fy is the neural
network trained on historical and real-time data.
e An optimization solver determines the best sequence of control inputs by
minimizing a cost function while satisfying system constraints:
N-1

min Z C(xp, uy) + €y (xy)
k=0

Uy, UN=1

subject to:
Xmin < X < Xmax» Wmin < Uy < Umax

ensuring that states and control actions remain within safe operating limits.

e Only the first control action uyis applied to the building, and the process

repeats at the next time step, shifting the horizon forward.

This closed-loop control strategy allows IS10.a to dynamically adjust to variations
in building conditions, occupancy patterns, and external disturbances, achieving
efficient, real-time energy management. Figure 61visually represents this process,
showing how the estimator, neural network model, optimization solver, and
building system interact to form a continuous control loop.
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Figure 61. Black-Box MPC framework for building energy management.

The system continuously optimizes control inputs based on real-time sensor data,
an estimator that refines state measurements, and a neural network model that
predicts future states. An optimization solver determines the best control actions
while respecting operational constraints, ensuring energy efficiency and user
comfort.
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3.5.1.3. Evaluation & Results

In order to evaluate the adopted approach, we use the hydronic heat pump
model froon BOPTEST environment. This testbed is a building with 192m? and
includes a 15-kW air-to-water modulating heat pump which extracts energy from
the ambient air to supply heat to the floor heating system The control signal is the
heat pump modulation signal with range [0,1] dictating how much heating power
the system provides. The cost function to be minimized becomes:
N-1
min Z(Wl-s,% + W, - Py - pry + W; - Au?)

Up, UN-1 %=0
Where s; is the temperature deviation from the defined operational bounds, P;is
the electricity consumption, pry is the electricity price and W;,W,, W5 are scalar
weight factors. Note that this formulation encapsulates monetary cost, while a
realization that prompts least energy usage could be W, - u;, excluding the direct
connection with energy price. The last term penalizes oscillations on the change
of control signal. Two streams of scenarios have been applied: the first represents
a family setting with the corresponding occupancy profiles, while the second
corresponds to an office work setting, as follows:

21°C —23°C,if 7:00 <t < 9:00 (Weekday)

18°C — 20°C,if 9:00 <t < 13:00 (Weekday)
21°C — 23°C,if 13:00 < t < 22: 00 (Weekday)
17°C — 20°C,if 22: 00 <t < 7:00 (Weekday)
21°C — 23°C,if 7:00 <t < 22:00 (Weekend)
17°C — 20°C,if 22:00 <t < 7:00 (Weekend)

Tfamily (t) —

17°C — 20°C,if 19:00 < t < 7:00 (Weekday)

Toffice(t)y = {21°C — 23°C,if 7:00 < t < 19: 00 (Weekday)

17°C — 20°C, if 0:00 < t < 24:00 (Weekend)
To further encapsulate the trade-off between thermal comfort deviations and
monetary cost, we introduce the Weighted Bounds Penalty (%), which represents
the average deviation from the defined comfort bounds. This metric is computed
as the mean of the Upper Bound Deviation Mean (%) and Lower Bound Deviation
Mean (%), effectively summarizing the overall deviation from the preferred

thermal comfort range.

The Upper Bound Deviation Mean (%) quantifies how much, on average, the
recommended energy consumption exceeds the upper flexibility limit set to
ensure thermal comfort. Conversely, the Lower Bound Deviation Mean (%)
measures the average deviation when the recommended energy consumption
falls below the lower flexibility threshold, potentially leading to discomfort due to
insufficient heating or cooling. Together, these two metrics provide insight into
how well the control strategy maintains energy consumption within the
predefined comfort range.

A lower Weighted Bounds Penalty (%) indicates that the control strategy better
adheres to the predefined comfort constraints, minimizing deviations from the
acceptable limits. A higher value, on the other hand, suggests greater deviations,
implying that the control actions may not fully respect occupant comfort
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preferences. By incorporating this factor, the analysis provides a more
interpretable assessment of the controllers’ ability to balance cost savings with
user comfort constraints. This allows for a more holistic evaluation of black-box
MPC configurations across different prediction horizons and dominant trade-off
objectives. The results indicate that configurations prioritizing comfort
preservation generally exhibit lower Weighted Bounds Penalty (%), whereas those
focused on monetary cost reduction tend to have higher deviations, reflecting the
inherent trade-offs in optimizing energy consumption.

Table 4 and Table 5 present the comparative performance of Black-Box Model
Predictive Control (MPC) and PID controllers under family and office occupancy
profiles, respectively, for a 7-day testing period. The results showcase the trade-
offs between total monetary cost (€/kWh), upper and lower bound deviations, and
the weighted bounds penalty across different prediction horizons and
optimization objectives.

Table 4. Performance comparison of Black-Box MPC and PID controllers under a
family occupancy profile

PID ; ] 5621133461 | 1.546379334 | 0.377891052 | 0.962
12 Mogfsttary 423799411 | 0.42278056 | 0.860304355| 0.642
12 | Comfort | < 85850017 | 0.465731612 |0.295795434| 0.381
Preservation
Black-box | | Monetary |5 e16597 |0.899254069| 1203720508 | 1.05
MPC Cost
o4 | COMIOTt | 63397034|1.036208632 | 0317788169 | 0.674

Preservation

Monetary

Cost 42.86603132 | 0.599015822 | 1.388741299 | 0.995

48
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PID ; : 57.03238467 | 1373900464 | 0259814341 | 0.817

12 Mocr‘ifry 35.14754978| 0.172165415 | 1.939852886 | 1.06

1 | comfort oo o8033668 | 0201474917 |0.402354007| 0.302
Preservation

Black-box| | Monetary | - ga206665 | 0295603152 | 0.630709386| 0.464

MPC Cost

24 | COmort L 63770401 |0.486369459 | 0.130668254| 0.309
Preservation

48 Mogfstfry 40.42509569 | 0.564285574 | 0.304510056 | 0.435

The PID controller, included as a baseline, demonstrates higher total monetary
costs compared to all Black-Box MPC configurations. The Black-Box MPC
controller, evaluated under different prediction horizons (12, 24, and 48 steps with
each step representing a 15-minute interval) and dominant objectives (monetary
cost vs. comfort preservation), consistently outperforms PID in cost reduction
while maintaining varying degrees of adherence to thermal comfort constraints.
The dominant objective in a trade-off setting illustrates whether a particular
configuration prioritizes monetary cost minimization or comfort preservation. As
expected, configurations prioritizing monetary cost reduction tend to exhibit
higher deviations from the comfort bounds, leading to an increased Weighted
Bounds Penalty (%). Conversely, configurations focused on comfort preservation
result in lower deviations but at the expense of slightly higher energy costs.

A comparison between Table 4 and Table 5 highlights the impact of different
occupancy profiles on the control strategies. The family setting (Table 4) exhibits
greater variability in deviation patterns due to more dynamic occupancy and
energy demand fluctuations, whereas the office setting (Table 5) shows relatively
lower deviations, likely due to more predictable and structured occupancy
schedules. Overall, the results emphasize that the choice of prediction horizon
and dominant objective significantly influences the trade-offs in energy cost and
thermal comfort. The introduction of the Weighted Bounds Penalty (%) provides
an abstract metric to quantify the comfort deviations, aiding in the assessment of
optimal control strategies for different building usage scenarios.
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The results presented in Figure 62 and Figure 63 compare the performance of
PID and Black-Box MPC controllers under two different occupancy settings:
family and office environments. Both cases utilize a 12-step prediction horizon (3
hours) with a configuration that prioritizes comfort preservation. In both
scenarios, the Black-Box MPC demonstrates improved temperature regulation,
maintaining indoor temperatures closer to the predefined comfort bounds while
adapting control actions dynamically. The PID controller, in contrast, exhibits
slower responsiveness and more deviation from the desired comfort range.

The heat pump control signals reveal that the MPC-based approach leverages
predictive capabilities to adjust energy consumption proactively, avoiding
unnecessary fluctuations and reducing control effort. The difference is particularly
noticeable during transitions between heating cycles, where the MPC controller
provides smoother adjustments compared to the more reactive nature of PID. An
exception is observed during 5 day in the office case where the MPC approach
produced high oscillation operation to thermal comfort bounds. In the family
occupancy profile (Figure 62), variations in indoor temperature are more dynamic
due to irregular occupancy patterns, leading to increased demand flexibility. The
MPC controller effectively utilizes the available flexibility, reducing sharp
deviations from comfort bounds. In the office occupancy profile (Figure 63), the
environment exhibits more predictable energy demand. Here, the MPC approach
maintains a stable and efficient control strategy, particularly during periods of
lower occupancy, leading to smoother operation with fewer control variations.
Overall, these results highlight the advantages of Black-Box MPC in balancing
comfort preservation with energy efficiency, making it a more effective strategy
than traditional PID control in dynamic building environments.
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Figure 62. Comparison of PID {light red} and Black-Box MPC (12-step horizon, Comfort

Preservation) {light blue}under a family occupancy profile.

The subplots present indoor temperature tracking, heat pump control signals,
solar radiation, and ambient temperature variations. The MPC controller exhibits
improved adherence to thermal comfort bounds while optimizing control effort.
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Figure 63. Comparison of PID {light red} and Black-Box MPC (12-step horizon, Comfort
Preservation) {light blue} under an office occupancy profile.

The subplots depict indoor temperature tracking, control signals, solar radiation,
and ambient temperature trends. The MPC controller shows improved control
precision and responsiveness to external conditions compared to PID.

3.5.1.4. Next Steps

Future work will focus on enhancing the Black-Box MPC approach by refining its
optimization framework and expanding its adaptability to different building
conditions. A key direction is the integration of a simulation engine that emulates
the behavior of pilot cases (from IS5), allowing for more representative training
and testing environments instead of relying on publicly available testbeds. This
will improve the controller's ability to generalize across different occupancy and
energy demand scenarios while also to adapt on the actual pilot cases.

Additionally, the incorporation of real-world data from pilot buildings will further
validate the model's performance under practical conditions, capturing dynamic
interactions between occupancy patterns, HVAC operations, and external
disturbances. The approach will also be aligned with Task 4.6, ensuring that the
control strategy integrates seamlessly into the broader energy management
framework.

3.5.2. HVAC Management System (I1S10b)

The current innovative solution so-called IS10b is an original tool developed by
CEA through the EVELIXIA project. Buildings can offer a degree of flexibility to
connected energy networks (district heating and electric grid), such as load
shifting, load shedding, thanks to their mass inertia, their RES capacity of
production and the occupant’s tolerance in term of comfort.ISIOb developed by
CEA dispatches the building's heating and air-conditioning power over the next
two days, minimizing energy costs while respecting the thermal comfort of
occupants, taking into account the evolution of energy prices, weather conditions
and building activity.
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3.5.2.1. Objectives

As part of the EVELIXIA project, CEA promotes a solution for managing the
flexibilities of buildings and their heating and cooling systems over a few days
ahead, depending on the specific use case to be run. This optimization tool, so
called energy management system (EMS), requires an objective function to be
implemented by users according to their own point of interest and the systems’
features. The objective function may be, for example, to reduce the energy
consumption as much as possible, to increase the share of Renewable Energy
Sources (RES) in the necessary energy consumption or even, to reach the lowest
energy cost over the period. The tool is built to compute the optimized trajectory
under the constraint of ensuring the thermal comfort of the occupants. This tool
also enables users to track the energy flow trajectories defined the day before by
another optimization solution (such as 1S9), if it exists, under the condition that it
is fed with the optimized time series to be followed. The solution proposed by the
CEA does not involve controlling the systems. It will produce outputs in the form
of time series in .txt or .csg format and transmit them to the EVELIXIA platform.
These results must be retrieved from the platform somehow and transformed into
actions by operators in the field.

3.5.2.2. Methodology

The optimization core of the ISI0b solution is implemented in a GAMS
environment. It is based on a Mixed Integer Linear Programing (MILP ) approach
to ensure the optimum energy distribution of the HVAC and loads systems. CEA is
used to developing and fine-tuning projects in this environment according to the
wishes of its customers or partners. The necessary bricks around the optimization
tool block were programmed in Matlab, specifically, the bricks dedicated to
preparing the input data and to managing the dataflow.

The workflow in the IS10b solution is as follows:

/\ \ )
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Building \
model \
» Parameters ||/~ e
Identification Optimization
Calibration model
!Lmln; ) 2
- !-v-.-l Feut \
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\ ' 4
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| USE-CASE — OBJECTIVE FUNCTION }- - > —
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Figure 64.1S10b workflow

EVELIXIA — D4.1 Autonomous Building Digital Twins 88



VELIXIA

Funded by
the European Union

The IS10b solution relies on an electrical analogy RC-type model to simulate the
thermal behavior of the buildings considered. The RC-type building model is
based on the repealed standard ISO13790:2008, including 5 resistances and 1
capacity and several temperatures nodes 0, Osup, Bair, 05, Om. The temperature nodes
respectively denote the external temperature, the supply air temperature ¢, that
could be different of 6. in case of energy recovering systems between fresh and
exhaust air, indoor air temperature, star node temperature 6s corresponding to
the delta to star conversion and effective mass temperature 6., representing the
mean temperature of the building structure.

O

Figure 65. RC network heat flows (from abrogated std. 1SO13790:2008)

In view of the RC building model, the IS10b solution also entails a program, as a
second brick, dedicated to identifying the parameters Hye, Hirw, Hirem, Htris, Herms, Crn,
An. The goal is to match the outputs of the building model to the measured air
temperatures, considering the necessary measured inputs such as ®sl, Diny, PHcng
from which @, @, ®nare calculated. These six latter are the power flows
representing respectively solar radiations on the total exposed external surfaces,
internal heat gains distributed inside the building, heating/cooling power
supplied to the building and the inputs deduced therefrom featuring the power
flows transmitted to the indoor air temperature node, the star temperature node
and the structure temperature node.

CEA designed the parameter identification tool based on the PSO (Particle Swarm
Optimization) methodology that is powerful for estimating the optimum target
although it does require some precaution in its handling and in parameter
bounding. This calibration process of the model will be repeated as often as
necessary to take into account the variations of building thermal behavior along
the seasons and activities. Afterwards, the so-calibrated parameters are set into
the optimization tool block. The EMS contains four different models that can be
extended according to the scope of the use case and the assets considered (e.g.
BESS, solar PV, loads):
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o Building system model grouping the buildings under consideration
into different groups and their relationship with the heat pumps
involved (heating and cooling systems). This model ensures to comply
with the energy matching balance at each building node and at each
heat pumps node

o Building model based on repealed ISO13790:2008. The building model
implemented in the optimization block calculates the power flow to
ensure the air temperature target and thermal comfort.

. Building control model. This model deals with the strategy to control
thermal comfort: manual or adaptive. It switches alternatively and
automatically from one mode to the other.

° Heat pump model. The model can simulate any other types of heating
or cooling systems as it is formulated on an energy efficiency ratio. It
manages minimum and maximum power limitations. It can also
consider limitations at the start-up and shut-down phases and
consider fixed ramps to emulate the dynamic behavior of power
variations. At this stage, there is no calibration of the heat pumps
model, since heating and cooling systems are assumed to be well
documented and maintained. That might be done in further
developments.

According to what has already been mentioned, IS10b tool requires many inputs,
static data, historical data, and dynamic data.

° Static data are gathering the information about buildings structure
and thermal features, sizes including openings size and exposure, the
power rate of heating, cooling, energy recovering systems and RES
involved as well as the indoor air temperature set point and the
ventilation air flow rate profile.

o Historical data supports the process of identifying the parameters of
the building model. For instance, to identify the building’'s thermal
characteristics, the RC-type model needs to be fed with solar radiation
hitting the building's external surfaces at each time step. This
recalculated data is expected from IS5 “Building Energy Modelling and
Simulation”.

° Dynamic data are used to feed the optimization model with forecasts
and real-time information (indoor air temperature, energy market
prices, air flow rate, weather, occupancy, load profiles, RES production
if any, availability of HVAC systems).

IS10b optimization tool deals with the following flexibilities in terms of comfort:

° Indoor air temperature inferior gap profile.
o Indoor air temperature superior gap profile.
o Indoor air temperature set points depending on the comfort mode to

be calculated and then applied (manual or adaptive).

Moreover, the comfort flexibility can be constrained by two additional parameters
related to the variation limits of the air temperature set point:
. Indoor air temperature ramp up Mmax.
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o Indoor air temperature ramp down max.

It is relevant to notice that the building model can deal with the indoor air
temperature as well as the indoor operative temperature, both at the end of each
time step or for the mean value over each time step. The operative temperature is
defined as the weighted average of indoor air temperature and radiative
temperature from the inside walls (see the repealed 1SO13790:2008). The two
different weights to calculate the operative temperature are fine-tunable. For its
part, the so-called HeatPumpMdIl model is based on a thermal efficiency ratio
approach. It encompasses the parameters as follows:

o Thermal power min: this is the lowest thermal power provided by the

system.

° Thermal power max: this is the uppers thermal power provided by the
system.

. Thermal start power max: this is the uppers thermal power that can be
provided by the system at the starting stage.

° Thermal stop power max: this is the uppers thermal power allowing
the system to shut down.

HeatPumpMddIl model is also considering the thermal system inertia and
dynamic with two additional parameters to be filled in:
° Thermal power increasing max.

. Thermal power decreasing max.

The heat pump model also emulates the type of emitters inside the building by
considering this coefficient representing the convective part on total thermal
exchanges from emitters (convective + radiative emissions).A run of IS10b is
stepping as follows:
° Receiving the request from the building’s owner, operator or user
through the EVELIXIA platform.

o Getting the static and historical data from the EVELIXIA platform.

° Setting the parameters as regards the building model, building
control model, thermal system.

o Identifying the thermal features of the buildings under consideration.
° Running the optimization computation.

. Collecting output time-series data on thermal and electrical power
consumption for integration into the EVELIXIA platform and field
application.

Each specific use case and asset requires CEA to discuss the objective function
with the end-user.

3.5.2.3. Evaluation & Results

The IS10b test illustrated in the current section is not linked to any pilot site in the
EVELIXIA project but it does represent a use case based on minimising the energy
cost associated with the heating and air conditioning systems. This objective is
well representing part of what EVELIXIA is striving to test and demonstrate.
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CEA displays the IS10b results for a system of two buildings, with floor areas of 100
and 200 m?respectively, building structure=medium and heavy according to the
abrogated 1SO13790:2008 (respective specific heat ¢, = 165 and 260 kJ/m?) and
two heating systems. The building #1 is heated by heating system #1 and the
building #2 is heated by both heating systems #1 and 2. Each heating system has
a power rating of 10 kW.
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 Building #1 HeatPump
- medium #1

[ Building#2 |\ HeatPump
- heavy #2

N

Figure 66. Demo's relationships between the buildings and heat pumps

Buildings features are the followings (all definitions in accordance with
ISO13790:2008):

BuildingModel3_p_Af =100 * ones(1, Nbr_BuildingModel3_entities); % in m?
BuildingModel3_p_Af(1,2) = 200; % in m?

BuildingModel3_p_Atot = 4.5*BuildingModel3_Params.BuildingModel3_p_Af;
BuildingModel3_p_Am  =2.5* BuildingModel3_p_Af; % Medium
BuildingModel3_p_Am(1,2) = 3 * BuildingModel3_p_Af(1,2); % Heavy
BuildingModel3_p_cm = ones(Nbr_BuildingModel3_entities, N_TimeStep); % J/m?
BuildingModel3_p_cm(1,:) = (165000 / Wh_to_Joules); % Medium building structure
BuildingModel3_p_cm(2,:) = (260000 / Wh_to_Joules); % Heavy building structure
BuildingModel3_p_his =3.45* ones(Nbr_BuildingModel3_entities, N_TimeStep);% W
BuildingModel3_p_hms =9.10 * ones(Nbr_BuildingModel3_entities, N_TimeStep);% W
BuildingModel3_p_H_em = 90 * ones(Nbr_BuildingModel3_entities, N_TimeStep);% W
BuildingModel3_p_H_ve = 100 * ones(Nbr_BuildingModel3_entities, N_TimeStep);% W
BuildingModel3_p_H_w = 108 * ones(Nbr_BuildingModel3_entities, N_TimeStep);% W

In this experience, the last seven parameters have been chosen arbitrarily, but in
the real performance of IS10b they must be identified thanks to the PSO
methodology mentioned in the previous section. The weather time series comes
from meteonorm database: LeHavre (France GPS cord. 495 / 0.]1).In this
demonstration, solar radiations are those received at this GPS coordinates, on the
level of ground without any calculation of the total radiations on each external
walls and roof. It has been decided to rely on the building VE from IESRD to get
this data for each time step. It will be applied in the coming month for the Greek
and French pilot sites. Using the IS10b implies a previous stage to calculate the
solar radiation received by the various building's areas depending on their
orientation (see in section 3.5.2).
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The first day of test horizon time is on December 21, 2050.
FirstDay_of_Horizon =21,
Month_of _Horizon =12;
Year_of_Data = 2050;

1 hour is the time step, implying 72 steps time series to be handled and managed.

The internal heat gains are assumed to be known and fixed to: 200 W in each
building for the demo.

For this test, the convective upon total emission coefficient is fixed as follows:
BuildingModel3_p_CI_ConvRadia= 0.5 * ones(Nbr_BuildingModel3_entities, N_TimeStep);

And the operative temperature is calculated respectively from the indoor air
temperature and the internal wall surface temperature with the following
weights:

BuildingModel3_p_Cl_Theta_op = 0.3 * ones(Nbr_BuildingModel3_entities, N_TimeStep);
BuildingModel3_p_C2_Theta_op = 0.7 * ones(Nbr_BuildingModel3_entities, N_TimeStep);

The heating systems have been customized with these parameters in mind:

HeatPumpMdIl_p_COP_Heat = 4*ones(Nbr_HeatPumpMdll_entities, N_TimeStep);% Watt
HeatPumpMdIl_p_Pac_Heat_min  =500*ones(1, Nbr_HeatPumpMdli_entities); % Watt
HeatPumpMdIl_p_Pac_Heat_max  =2500*ones(l, Nbr_HeatPumpMdIl_entities); % Watt
HeatPumpMdIl_p_Pac_Heat_Start_max = 2500*ones(1, Nor_HeatPumpMdll_entities); % Watt
HeatPumpMdll_p_Pac_Heat_Stop_max = 2500*ones(l, Nbr_HeatPumpMdll_entities); % Watt

These last two parameters are set at the same level as the power rating of the
heating system. That means they have no impact on the thermal behaviour of the
heat pump system during the optimization test. However, they can be between
the Pac_Heat_min and the Pac_Heat_max, as a function of the considered heating
system.

A horizon period of three days have been selected from the December 21, and the
indoor air temperature set point is distributed as follows:

The temperature set points are corresponding to the indoor operative
temperature aforementioned in section 3.5.2.
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Figure 67.0perative temperature set point and limitations
over the time horizon for the demo

The operative temperature manual set points were constrained between these
two bounds:

BuildMod3Ctrll_p_Theta_Manual_SetPoint_UB = 21 * ones(Nbr_BuildMod3Ctrl1_set,
Nbr_Day_of_Horizon); % Borne sup Consigneen mode manuel in Celsius

BuildMod3Ctrl1_p_Theta_Manual_SetPoint_LB = 20 * ones(Nbr_BuildMod3Ctrl1_set,
Nbr_Day_of_Horizon); % Borne inf Consigneen mode manuel in Celsius

For the current test, the initial indoor air temperature inside the two buildings is
assumed to be 18 degrees Celsius when the primary indoor wall surface
temperature is admitted to be 18.6 degrees Celsius.

In case of adaptive control mode, the temperature adaptive set points are
compelled into the range of +2/-3 degrees Celsius around the gliding daily
average temperature (see calculation in the RE2020 French regulation). Here it is
relevant to mention that the gliding daily average temperature is calculated from
the last height days.

As for the objective function, CEA programmed a cost function including the
energy consumption over the period of three days in addition to the cost in term
of discomfort represented by the gap between actual temperature and the set
point. The electric energy prices in €/kWh and the prices of discomfort in €/K at
are defined at each time step. For example, CEA has considered:
. 0 €/K when the actual temperature deviation is retained inside the
tolerated range: between the upper and the lower bounds.

° 150 €/K when the temperature deviation is outside this admitted
range.

For sure, the energy prices and comfort tolerances have to be defined with the
support of the IS10b users (building owners, operators, occupants).
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For the current demonstration of IS10b, CEA defined arbitrarily the electric energy
prices:

BuildMod3Ctrl1_p_Theta_Manual_SetPoint_UB = 21 * ones(Nbr_BuildMod3Ctrl1_set,
Nbr_Day_of_Horizon); % Borne sup Consigneen mode manuel in Celsius

BuildMod3Ctrl1_p_Theta_Manual_SetPoint_LB = 20 * ones(Nbr_BuildMod3Ctrl1_set,
Nbr_Day_of_Horizon); % Borne inf Consigneen mode manuel in Celsius

% Prix achatelec:

Price_Elec = 0.20 *Te-3 * ones(1, N_TimeStep); % 0.2 €/kWh

%

Period_LowPrice_Elec = [Periode3, Periode4, Periode6, Periode7, Periode9];

%

Price_Elec(Period_LowPrice_Elec) = 0.1 *1e-3; % 0.1 €/kWh Low charge onto the grid

The following equations define the objective function to be tested:
eg_Cost_Elec(HeatPumpMdll_set, k)

v_Cost_Elec(HeatPumpMdli_set, k)
:e:
- p_Price_Elec(k) * HeatPumpMdIl_v_Pac(HeatPumpMdll_set, k) * TimeStep(k)
*

eq_Obj_Cost

obj_Cost

:e:

sum( (BuildMod3Ctrli_set, k) , BuildMod3Ctrll_v_Theta_CostGap (BuildMod3Ctrl1_set,
k))

+

sum( (HeatPumpMdli_set, k),v_Cost_Elec (HeatPumpMdll_set, k))

The IS10b is up-and-running and the optimisation test is complete:

—————————————————— Status returned via gdx file --------------------
Solver Status:1 -> must be equal to 1 for NORMAL COMPLETION
Model Status : 8 ->see here: Model Status in Gams documentation

Problem solved : in 36.042 seconds

The figures here after present the results of this IS10b test.
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Figure 68 shows the indoor operative temperatures (end and average of time
step) for the two buildings over the three-day horizon period. The operative
temperatures are within the tolerance range.
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Figure 68. Operative temperature evolution after optimization by EMS
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In addition, Figure 69 illustrates the thermal power distribution from heating
systems to the supplied buildings.

They also show the energy needs of the two buildings over the three-day horizon.
As expected, building #2, which is larger and heavier than the building #],
anticipates the heating phases after the first day and the target temperature: 20
degrees Celsius. It requires higher peak energy when the energy prices are low,
and lower thermal consumption at the end of days when electricity prices are still
high.
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Figure 69. Distribution of heat power to buildings after optimization by EMS
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The IS10b also calculates the electricity consumptions of the two heating systems
under consideration to control the heating space air conditioning of the buildings.
The optimized control of the heating systems discloses the priority of the heating
system #1 when the heating system #2 is activated mainly to overcome the
energy peaks required to heat the building #2.
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Figure 70.Power consumption of heat pumps for the demo

This section is intended to showcase the role of ISIOb and the opportunity offered.
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3.5.2.4. Next Steps

The ongoing task is to push this work on the CEA mOreGAMS simulation
environment and to connect it to the EVELIXIA platform.

The IS10b can both be run to optimise the energy consumptions for space heating
and air-conditioning or to follow intra-day the trajectory drawn the days before
(from 1S9 if any). Furthermore, it can also involve different loads (Hot water tanks,
batteries, other loads related to indoor activities) or RES energy generation taking
into account the variation of electricity prices induced.

CEA is now looking forward to connecting the IS10b solution to the interested
pilot sites through the EVELIXIA platform. The input data are still required from
other solutions (e.g. IS1, IS2, IS4, IS5, 1S9, 1S18).

3.5.3. Building Aggregator Service, BAS (1S10c)

The Danish pilot site, located in Aabenraa, Southern Denmark, is part of the
Kolstrup Housing Association. This pilot site is the demo site for developing and
testing the innovative solution Building Aggregator Service, BAS. The pilot focuses
on typical Danish housing association buildings from the 1970s, which were
renovated in 2015 with photovoltaic (PV) panels, batteries and EV charging
stations. The BAS enables cross sector coupling between electricity and district
heating and leveraging the flexibility in heating and hot water production in an
apartment building block.

3.5.3.1. Objectives

The BAS is the tool to be developed to fulfil the following objectives:
e Maximize local consumption of electricity generated from local PV.
e Optimize local electricity usage based on variable local tariffs and electricity
prices.
o Utilize PV electricity to power an electric heater installed in a domestic hot
water (DHW) tank.
e Test concepts and business cases for exporting energy to the district
heating (DH) grid.
e Collaborate with the Distribution System Operator (DSO) to explore
optimized grid load management and reduce grid bottlenecks.
e Evaluate the potential for delivering balancing services to Balance
Responsible Parties (BRPs) and the Transmission System Operator (TSO).
In Denmark the TSO Energinet is currently procuring balancing services from
large power plants and aggregated combined heat and power plants. The TSO
and DSOs are also trying to establish a market for grid stability. However, these
services are predominantly provided major players, with no local models available
for community-level aggregators. The BAS is a tool where energy flows can be
controlled and optimized according to price signals and relevant constraints.

EVELIXIA — D4.1 Autonomous Building Digital Twins 99



Funded by
the European Union

stuxm

3.5.3.2. Methodology

The following work break-down has been established to develop and test the BAS:
Retrofit of Evelixia components on Pilot site

Setup device connection, data collection, control and management
Develop API support

Create Energy forecast

Create flexibility forecast

Create optimizer, define constraints

Develop tenant app

Develop operation GUI

e Develop watchdog

3.5.3.3. Evaluation and Results

In the following section the various steps in the above work breakdown will be
further elaborated and the first results listed.

There are 2 use cases defined for the Danish Pilot Site
Table 6: Danish Pilot Site UCs

UC-DK#1 |Electricity Optimization |Optimized operation of inverter, battery,
on Building Level and possibly consuming assets, to minimize
cost of electricity.

UC-DK#2 |Optimization of District |Optimized operation of district heating
Heating Consumption assets, including conversion of surplus
and Production electricity to energy for district heating
network.

The following description is mainly focusing on Use Case 1, UC-DK#1 as this will be
the first to be implemented.

Re: Retrofit of Evelixia components on Pilot site

Both technique room and apartment upgrades are planned. This is part of the
pilot site Denmark setup and detailed described in EVELIXIA'sD5.3 (Pilot
Implementation Planning and Preparations).

Re: Setup device connection, data collection, control and management

Evelixia pilot site operation is planned to use the Neogrid platform framework
with the following architecture:
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Figure 71. Neogrid platform framework

(Weather services, etc.)

The main product running on Neogrids platform today is PreHEAT, a monitoring
and control solution for energy installations in buildings. EVELIXIA plans to use
the same connection between gateway and server as PreHEAT and this is shown

below:
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Figure 72. Connection between gateway and server

Re: Develop API support
Data on the cloud can be accessed by authorized users via an open web API

based upon JSON. This API allows the following:
e Reading timeseries of measurements
e Reading of local weather data
Sending setpoints to the controller (Forwarded by the gateway to the BMS
system)
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The specification of this public APl is available on https;//neogrid-
technologies.gitlab.io/neogrid-api/. Moreover, a toolbox for Matlab and Python has
been developed, which allows fast usage of the system without extensive prior
knowledge of web APl management, which can be found here:
https://gitlab.com/neogrid-technologies-public.

Re: Create Energy forecast
Re: Create flexibility forecast
Re: Create optimizer, define constraints

Those steps here are part of the control for UC-DK#1. It can be further divided into
activities before first control can be done, and then into daily and 5 minutes
activities:

Initial activities before first start
e Setup data connection
Connect electricity meters, PV battery and inverter
Start collecting data
e Create energy forecaster
Use hourly electricity consumption for buildings
e Define flexibility
Operating range of battery
e Define constraints
Battery size
Battery charging and de-charging speed

Hourly activities
e Read future price data
Hourly spot price
o Read battery status
e Estimate hourly energy consumption for coming day
e Optimize energy flow in- and out of battery

Instant interrupt activities
e Fallback operation of battery in case something unforeseen happens

Re: Develop tenant app
A tenant app will be developed and rolled out in the test buildings with features
aimed at providing transparency, engaging tenants, and promoting efficient
energy use. Here's a summary of the app's features:
e Apartment Data:
Displays electricity and heating consumption, enabling tenants to monitor
their usage.
e Price information & flexibility
Provides information on electricity pricing and flexibility opportunities,
helping tenants optimize their energy consumption.
e Nudging for Efficient Behavior
Encourages tenants to adjust their consumption during periods of low
prices and tariffs, while supporting co-sector coupling (e.g., between district
heating and electricity).
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Re: Develop operation GUI
This activity is to develop a GUI supporting the use case. The target is to support:
¢ Show actual status
e Show relevant KPIs
e Turn on and off application
e Adjust constraints

Re: Develop watchdog
This activity is to develop an independent program which checks the operation of

the optimized operation.

3.5.3.4. Next Steps

For next steps (coming 6 months) the following activities are foreseen:

Finalize first iteration of UC-DK#1
Getting the retrofit installations on the two pilot sites done
Setting up full data collection for all elements including api support
Setting up specifications on tenant app and start development
Further developing of UC-DK#2

¢ Defining optimization criteria and constraints

¢ Clarify DSO involvement

¢ Clarify TSO and balancing services involvement

¢ Clarify if DH connection will be real or simulated
e Securing data for other IS’s to be tested out on the Danish pilot plant

The overall goal is to get as much functionality ready for heating season
2025/2026 and secure the Danish pilot plant delivers data to other IS's. IS10c is so
far “only” intended to be used on the Danish Pilot plan.
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4. CONCLUSIONS

This deliverable has presented the first version of D4.1, consolidating the
outcomes of Tasks 4.1 and 4.2 within the EVELIXIA project, with a particular focus
on enhancing building-to-grid (B2G) interaction through digitalisation and
advanced control strategies. The work achieved under these tasks lays the
foundation for a new generation of intelligent, autonomous building systems
capable of dynamic participation in energy markets while ensuring energy
efficiency, indoor comfort, and operational resilience.

Task 4.1 unfolded the development of building awareness and forecasting services
formulating a comprehensive toolbox that integrates real-time sensory inputs,
simulated data from the simulation environment engines, BIM-based static data
and forecasting modules, to further enable accurate predictions of indoor air
quality, energy demand, and flexibility potential, supporting both operational and
strategic decision-making at the building level.

Task 4.2 introduced the autonomous building decision support framework, which
builds upon the simulation and awareness capabilities of Task 4.1. Through the
integration of reinforcement learning, multi-timescale model predictive control,
and decision models, this toolbox offers intelligent support for tasks like day-
added demand planning, real-time HVAC control and investment planning. This
synergy enables compatibility with real time responses establishing the
foundation for the next steps of integration with the real pilot cases, based on
occupant needs, energy system dynamics and grid conditions.

Across both tasks, the development and preliminary implementation of
Innovative Services IS1-IS7 and 1S9-1S10 demonstrate the potential for cross-
cutting and reliable solutions addressing key operational vectors: air quality,
predictive analysis, energy flexibility potential, energy consumption forecasting,
simulation of building behaviours in control responses, investment planning and
control. The methodologies and tools described herein are designed for scalability
and adaptability across building types. Nevertheless, successful deployment
requires addressing several technical and operational challenges, including
robust data integration, interoperability between services, and stakeholder
engagement to support adoption and ensure relevance to end-user priorities.
Concluding, this deliverable serves as an important milestone in EVELIXIA's
pursuit of smart and resilient building and district systems. It brings together
state-of-the-art digital twin technologies, forecasting models, and autonomous
decision support systems to create a unified and flexible platform towards next
generation building energy management.
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6. ANNEXES

6.1. 1IS6 Annex
6.1.1. Detailed list of KPIs

6.1.1.1. Lifetime Primary Energy Demand

The Lifetime Primary Energy Demand (PED)is a vital environmental KPI that
measures the total primary energy demand of a project throughout its entire
lifecycle. This KPI quantifies the energy used from raw material extraction to the
operational and maintenance phases of the building or district. It provides a
comprehensive overview of a project’s total energy consumption and is essential
for evaluating energy efficiency and identifying potential areas for energy savings.
The total PED is derived from two primary sources:

e Infrastructure (Product/Construction Stages) Energy Demand: This includes
energy consumed during the production, transportation, and installation of
building materials and components (Stage A of the component lifecycle).
These energy requirements are considered embodied energy and are
incurred when a component is installed for the first time.

e Operational & Maintenance (Stage B Use Stage) Energy Demand: This
captures the energy used during the building’'s operational phase, such as
for heating, cooling, lighting, and other energy-consuming activities. It also
includes energy used for maintenance activities, including repair,
replacement, and refurbishment of components.

The Lifetime PED is critical for assessing a project’s long-term energy needs and
efficiency. It helps stakeholders make informed decisions to optimize energy use,
reduce reliance on non-renewable sources, and enhance overall sustainability.

The Lifetime PED is calculated in four versions, which include the total and
average annual demand for the whole building, and the total and annual average
demand per m? of useful building area. The basic equation for calculating the

total building PE demand is:
N
Lpg = Ipg + Z(O;[fg)
i=1
Where:
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Lpg is the Lifetime PE Demand of the project;

Ipg is the Infrastructure (embodied) PE Demand;

OIELEU is the Operational PE demand of the building’'s components in year i.

As in the case of GWP, the equations for the per m? and annual averages are given
by:

L = Leey o= Lee/ and T _ Legy
PE 2 (Useful area) ’ ~PE — N an PE/ , = N

The Infrastructure (embodied) PE demand is defined as:

ol = Z | FEM - PEFpye; + 05}y s
VjeComponents

Where:

FEj[i] is the Final Energy consumed by component in year, obtained from energy
demand timeseries;

PEFsy,,j is the PE factor associated with the fuel consumed by component (this
can differ depending on the project country and the energy mix), for year i
VERIFY uses the Primary Energy factors defined in “Support to Primary Energy

Factors Review (PEF), Specific Tender ENER/B2/2021-593/2022-467, European
Commission, DG ENER".

oli

pemy,; 1S the maintenance PE demand (inc. replacement \& Eol) of

component j for year i.

Unless explicit values are provided, the maintenance Primary Energy (PE)
demand is calculated as a percentage of a component’'s embodied PE. The End-
of-Life (EoL) PE demand is determined based on the planned disposal or recycling
of the component at the end of its useful life. If a component reaches the end of
its life during the analysis period and is scheduled for replacement, the embodied
PE demand for the replacement is added to the component’'s Operational PE

Demand for that year
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6.1.1.2. Lifetime Global Warming Potential

Lifecycle Global Warming Potential (GWP) is a critical environmental KPI that
measures the total greenhouse gas (GHG) emissions produced throughout a
project’s lifecycle. It is expressed in terms of kilograms of CO,-equivalent per
square meter of the building's useful floor area. This indicator provides a
comprehensive view of the carbon footprint associated with a project and helps

evaluate its overall environmental performance.

The total GWP consists of the following components:

e Infrastructure (Embodied) GHG Emissions: These are emissions generated
during the production and construction stages when a building
component is installed for the first time. For renovation projects, any
infrastructure costs incurred are allocated to the use stage, as outlined in

the Level(s) framework.

e Operational & Maintenance GHG Emissions: Emissions produced during the
use stage of the building. These include maintenance-related emissions
(from repair, replacement, and refurbishment activities) and operational

emissions (from energy consumption such as electricity or fuel).

GWP is calculated in four versions, which include the total and average annual
demand for the whole building, and the total and annual average demand per m?
of useful building area. The basis of the calculation is the GHG emissions over the
lifetime of the entire project (assumed to be N years), which are calculated as the
sum of the infrastructure (product / construction) emissions and use-stage

emissions over the period of estimation, as shown in equation below:

N
Lenwe = Igne + Z(O([;lp]m)

i=1
Where:

ng]m is the Operational GHG emissions of the building’s components in year i
Leye denotes the Lifetime GHG emissions of the project;

Isne denotes the Infrastructure (embodied) GHG emissions.

GWP (as per the definition used in Level(s) indicator 1.2) is then calculated as:
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LGWP

Lowp = —————
GWP ™ Useful area

The useful area is defined as the total building area that is heated or cooled. The
value is calculated in units of kgCO2-eq/m? The latter's equation can be written

as:

L
Lewp = GWP/ N

The Infrastructure (embodied) GHG emissions are defined as:

Igne = Z I GHG,j
VjeComponents

where Iz jare the GHG Emissions embodied in component j and include the
emissions associated with the manufacturing, transportation and installation of
the component (i.e. Stage A of its lifetime).

Note that infrastructure GHG emissions are taken into account only when
components are installed at the beginning of a project and are not included in
the calculation of this KPI for pre-existing components. Similarly, the components
are assumed to remain in place (installed at the building) at the end of the

analysis period, so end-of-life values are not added to the total.

The Total Operational annual GHG emissions are defined as:

[ _ AHlil [£]
Ogne = OGHG,MN + OGHG,FI
And include:

Annual emissions due to component maintenance:

[i]

— E [Z]
OGHG,MN - . 0
VjeComponents

GHG,MN,j

Where ng],G_MNJ: the annual GHG emissions required for the maintenance of

component jinyeari.

Whenever a component reaches its end-of-life, the assumption is that the
component is replaced with an identical one. In this case, the associated end-of-
life (Stage C) embodied GHG emissions are added to the maintenance costs for
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that year. This is because as far as the building as a whole is concerned,
component replacement is part of its maintenance process.

Emissions generated due to fuel imports for operating the components
considered (Stage B — Use Stage):

O(EgG,FI = Z FIE] 'EFk[i]
Where: vkeFuel
FI,[:] is the total Fuel Imports for fuel type k in year i, obtained from energy
demand timeseries (in KWh);
EFk[i]is the GHG emission factor associated with fuel type k (this can differ
depending on the project country and the energy mix) in year i. For electricity

specifically, country emissions factors are based on hourly historical values

obtained from this source (VERIFY's DB is updated annually).

6.1.1.3. Lifecycle Costs (LCC)

LCC calculated as the sum of all infrastructure costs (CAPEX), all operational costs
of all the components and the residual values of components at the end of the

project, as follows:

N
LC=IC+ZO§”—VR

=1

6.1.1.4. Pay Back Time (PBT)

Payback Period is estimated as period Tp = TL + tr
TL is the last period before the following inequality holds:

N
® ® (0)
Z(Oc,ren - OC,bl) > IC,ren
i=1

And
T O O
fo=1— 2ty Oc,ren — Ocp1)
T 1©
C,ren

Where
Ig)r)en: Initial renovation investment costs
Oélﬁen Ogl)ﬂ = Renovation and baseline scenarios’ operating costs, respectively.
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6.1.1.5. Levelized Cost of Energy (LCOE)

The Levelized Cost of Electricity (LCOE) is an economic KPI that measures the
average cost per unit of electricity generated over the duration of a project's
lifetime, expressed in euros per kilowatt-hour (€/kWh). This KPI is essential for
evaluating the cost- effectiveness of different energy generation systems,
including renewable and non-renewable sources.

The LCOE consists of the following cost components:

e Infrastructure Costs (CAPEX): These are the capital expenditures incurred
for the procurement, delivery, and installation of electricity generators. This
cost is a one-time investment made at the beginning of the project or
when new generators are installed.

e Operation and Maintenance Costs: These are recurring costs associated
with the ongoing operation and maintenance of the electricity generators.
They include regular upkeep, repairs, and inspections to ensure efficient
operation throughout the project’s lifespan.

e Fuel Costs: If the building or district has electricity generators that use fuel,
the fuel costs incurred during electricity generation are included. This
component is variable and depends on the type of fuel used, fuel prices,
and the efficiency of the generators.

LCOE KPI provides a clear view of the financial performance of electricity
generation systems, enabling stakeholders to compare different energy
generation scenarios and select the most cost-effective option.LCOEis calculated
using the following equation:

il

[i] [i]
N lccentOccenMnTOCGENNEI

LCOE = =22 (a+r)
yN sclily+ Exli
=1 (141t
Where:
Ig]GEN are the generator infrastructure costs (CAPEX) in year j;

OELEN'MN are the annual generator maintenance costs in year i (which include
replacement costs, if the analysis period exceeds the generators' lifetime);
OELEN_NE, are the costs of fuel used for electricity generation in year i (applicable

only in the case of electricity generators using other fuel);
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Sclland EXI! are respectively the total energy that was self-consumed and
exported by the building in year i;

r is the project discount rate.

The numerator of the fraction of the equation includes CAPEX of generators,
maintenance costs of the generators and costs for fuels used for electricity

generation.

6.1.1.6. Net Present Value (NPV)

NPV is defined as the sum of expected cashflows of all components included in

the considered investment. The cashflow CF,,,, for a component k is equal to:

@O _ <@ ® ® ® ® )
CE~ = Sk,func +5k,residual - Ck,inf - Ck,mn - Ck,func - Ck,EOL
Where:
S,Ef}um: functional savings of component k in year (i), calculated on the basis of the

corresponding expenditure expected during a baseline scenario

SIE?"esidual: residual value of component k in year (/)
C,g?nf: is the infrastructure cost (CAPEX) of component k, incurred if the

component is installed or replaced in year (i)

C,E?nn: maintenance cost of component k in year (i)
Citume: functional cost of component k in year (i). Note that if the component

generates revenue (through, e.g. the sale of electricity to the grid), this value may
be negative (i.e. the component will contribute to cash flows).

Ceomp,eor- ENd-oOf-Life cost of the component comp, incurred if the component is
replaced in year I.

The calculation of the NPV KPI is based on the equation:

M-1
cashflow;

t

& (1 + rate)

Whererateis the investment project’s discount rate. As per Level(s) guidance, the
default value is 4% (but can be configured to a different value). Here, cashflow, =

ZVcomponents CFt-
6.1.1.7. Internal Rate of Return (IRR)
IRR is used to quantify the profitability of an investment while taking into account

the time value of money. Its calculation is based on the following formula:
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In this formula vy = [vg, vy,..., vmrepresent the expected future cashflow of the

investment (marked as cashflow in NPV).

6.1.1.8. Return On Investment (ROI)

ROl is the cumulative sum of cashflow of the investment, with respect to the
initial investment's total cost (I-4pgx)as follows:

cashflow.cumsum
ROI =

ICAPEX

6.1.2. Results for the dual test-run approach

Resulting values of KPIs (INTEMA-approach)

CPERI Building CPERI Building Differencein
Baseline Upgrade resulting values
Scenario Scenario (%)
Primary Energy
Demand (KWh/m?/year) 111.88 117.39 4.68
GHG Emissions
(kgC02-eq)/year/m2) 20.76 22.07 596
Payback Period (years) No payback No payback -
Levelized Cost of i 0.05] i
Electricity (¢/kWh/year) '
NPV =50 years (K€) - -2.160,13 -
ROI t=50 years - -22.31 -
IRR t=50 years - No payback -

Cost Savings (INTEMA-approach)

LCCupgrade - LCCbaseIine

(€/year)

Costs Savings

8047.38
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Annual Primary Energy Demand (xWh) - Annuai GHG Emissions {kgCO-eq) Annsat Costs (€
= T s

¢ AN © EIRE
3 1 = 2 2 i

i &0 5 N -2 [[T—

Year Yoar Yo
VERIFY - Comparative Plots for baseline and upgrade scenarios (INTEMA-
approach)

Resulting values of KPIs (iISCAN-approach)

CPERI Building CPERI Building Difference in
Baseline Upgrade resulting values
Scenario Scenario (%)
Primary Energy
Demand 184.58 191.82 3.77
(kWh/m?/year)
GHG Emissions
(kgCO,-eq)/year/m?) 31.66 33.24 4.75
:’yae);t::)ck Period No payback No payback -
Levelized Cost of
Electricity - 0.051 -
(e/kWh/year)
NPV t=s0years (KE) - -5.918,41 -
ROI t=50 years - -61.12 -
IRR =50 years - No payback -

Cost Savings (iISCAN-approach)

LCCupgrade - LCCbaseIine
(€/year)
Costs 10902.6
Savings
Annual Primary Energy Demand (WWh) ) Annual GHG Emissions (kgCO-2q) Annual Costs (€)
= usm [~=-
|l|\||l|l|||ﬂl|ﬂ"|lﬁllfll | i | <l
(= -*'
B RN BimE T
VERIFY - Comparative Plots for baseline and upgrade scenarios (iSCAN-
approach)
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6.1.3. Comparison of relative deviations the dual test-run

approach

Deviation of relative difference between scenarios of Environmental KPIs

between the two approaches

Primary Energy
Demand
Global Warming
Potential

Deviation of
Relative
Differences

(%)

0.91

1.21

Relative difference of Cost Savings between the two approaches

Relative
Difference (%)

Costs Savings

26.19

6.2. IS7 Annex

6.2.1. SRIA questionnaire

Preference to improve the score of one key functionality in particular (optional)

Energy performance and operation
Response to the occupants' needs
Energy flexibility

Assessment preferences

Do you want to use the detailed service
catalogue or a simplified version?

Lowest cost to increase the SRI class by one level
Lowest cost to increase the SRI class by two levels

Lowest cost to increase the SRI class by three
levels

Select your country

Sector:

Floor area in m?

Number of rooms or zones

O
O
a

O 0O ooo

O

a
O

Detailed
Simplified
(default)

(@among 30 countries)

Residential
Non-residential

(number)

(number)
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(number)

Building characteristics relevant to heating domain

How many heat generators are there in this

building?

What is the main heating system of your

building?

Type of heating generator 1

Function of heating generator 1

Type of heating generator XX

Function of heating generator XX

Number of thermal storage units
Number of distribution pumyps
Number of heating emitters

Type of heating emitter 1

Function of heating emitter 1

Type of heating emitter XX

Function of heating emitter XX

000 0000 OO0 O0OoO0 oooOooo

(number)

Heat pump

Gas boiler

Fuel boiler

Wood boiler

District heating network
Other

Heat pump

Gas boiler

District heating network
Other

Heating
Cooling
Both heating & cooling

Heat pump

Gas boiler

District heating network
Other

Heating
Cooling
Both heating & cooling

(number)

(number)

(number)

000 O00OO00O OoO0o oooag

Building characteristics relevant to cooling domain

Is cooling mandatory for this type of building in

your country?

Is the building equipped with a cooling system?

What is the principal cooling system of your

building?

O
O
a

Radiator
Fan coil
TABS

Heat pump

Heating
Cooling
Both heating & cooling

Radiator
Fan coil
TABS

Heat pump

Heating
Cooling
Both heating & cooling

Yes/No

Yes/No

Heat pump
District cooling network
Other
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How many cold generators are there in this

building?
Type of cooling generator 1

Function of cooling generator 1

Type of cooling generator XX

Function of cooling generator XX

Number of distribution pumps
Number of cooling emitters

Type of cooling emitter 1

Function of cooling emitter 1

Type of cooling emitter XX

Function of cooling emitter XX

Funded by
the European Union

(number)

OO0 OO0 OO0o ooao

Heat pump
District cooling network
Other

Heating
Cooling
Both heating & cooling

Heat pump
District cooling network
Other

Heating
Cooling
Both heating & cooling

(number)

(number)

000 O0OO0O0O OO0Oo oooao

Radiator
Fan coil
TABS

Heat pump

Heating
Cooling
Both heating & cooling

Radiator
Fan caoil
TABS

Heat pump

Heating
Cooling
Both heating & cooling

Building characteristics relevant to ventilation domain

Number of air handling units (AHUSs)

Type of AHUs control

Number of fan coils

Type of fan coils control

Number of air quality sensors

(number)

a
a
O

No ventilation
Manual
Automatic

(number)

a
a
O

No ventilation
Manual
Automatic

(number)

Building characteristics relevant to domestic hot water domain

What is the principal DHW system of your

building?

Number of DHW generators

Type of DHW generator 1

O Direct electric heating
O Integrated heat pump
O Hot water generation

(number)

O Direct electric heating
O Integrated heat pump

EVELIXIA — D4.1 Autonomous Building Digital Twins 17



AN
r; VELIXIA

Funded by
the European Union

Hot water generation

Coverage of DHW generator 1 Building
Floor
Apartment

Room/zone

Type of DHW generator ZZ Direct electric heating
Integrated heat pump

Hot water generation

Coverage of DHW generator ZZ Building
Floor
Apartment

Room/zone

OO0O00O OO0 Ooooo O

Is the building equipped with solar collectors for  Yes/No
DHW?

Building characteristics relevant to lighting domain

Number of lighting points (number)

Building characteristics relevant to dynamic building envelope domain
Number of solar protection systems on windows = (number)

Building characteristics relevant to electricity domain

Is the building equipped with an electricity Yes/No
production system (e.g., PV panels)?

Is the building equipped with an electricity Yes/No
storage system (e.g., battery)?

Is the building equipped with a combined heat Yes/No
and power (CHP- system)?

Number of electricity production units (number)
Number of electricity storage units (number)
Building characteristics relevant to EV charging domain
Is the building equipped with parking spaces? Yes/No

Number of parking slots (number)
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6.2.2. Example of smartness upgrades implemented in the SRIA
Smart- Functionality level | Functionality level | Functionality level
ready Functionality level upgrade upgrade upgrade

Domain |service upgrade FLO=>FL1 FL1=>FL2 FL2=>FL3 FL3=>FL4
Cost Cost Cost Cost
Upgrade FLO= |Upgrade |FL1= (Upgrade |FL2= |Upgrade |FL3=
action >FL1, |action >FL2, |action >FL3, [action >FL4,
FLO=>FL1 |[€ FL1=>FL2 |€ FL2=>FL3 (€ FL3=>FL4 |€
Installation
of a speed
variator on
each
distribution
Replacem pump and
Installation of ent of connection
C-1d: a controller on/off Installation to an
Control of |of pumps for pump per of a speed external
distributio [heating like a multi- variator on controller
n pumps |Thermador stage each ora
in RA100 - 24V distribution distribution SCADA
Cooling |networks |or equivalent| 495(pump 1100 |pump 1100|system
Installation
of control
Installation element
of single- with room
Installation flow MCV temperatur
of with flow e controller
Installation of mechanica regulation function,
mechanically Iy based on communica
operated operated humidity tion and
V-la: extract units extract and VOC CO2/moist
Supply air |with units with pollution ure
flow temporisatio temporisati sensors sensors
control at (nand on and integrated installed
Ventilatio [the room [humidity occupancy in the locally by
n level detectors 94 |detectors 95 |ventilator 345|zone 436
Installation
of a
lighting
Installation of Installation controller
a controller of a motion with a
for control of ora motion or
lighting presence a presence
L-1a: circuits and detector detector
Occupanc |of an with an with
y control |interruptor integrated integrated
for indoor |for manual luminosity luminosity
Lighting |lighting On/Off 237|sensor 230|sensor 1258
Installation Installation Data
of motor of motor collection
Installation of for solar for solar of weather
DE-1: motor and shading shading forecasts
Window |control devices, devices, from a web
Dynamic |solar button for blinds light/blind/ service and
building |shading |sun shading controller HVAC installation
envelop |control devices 300|and solar controller of a system
EVELIXIA — D4.1 Autonomous Building Digital Twins 19
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irradiation and from the
and/or several level 3
luminosity ambient
sensors for and
an outdoor
automated sensors for
control an
automated
control of
light/blind/
HVAC
Installation
ofa PV
panels'
field with
reporting
of current
generation
and Level 2 +
historical weather
data to forecast
final user data Level 3 +
OR setup collection fault
E-2: of data from a web detection
Reporting |Installation of historisatio service + capacibility
informatio |a PV panels' n installation in order to
n field with functionalit of AC and identify
regarding |reporting of y if the PV DC meters problems
local current panels' for of PV
electricity [generation field is performan modules,
Electricit |generatio |data to final already ce strings or
y n user installed evaluation arrays
Installation
of IRVE Installation
Installation double of IRVE
of IRVE charging double
charging station charging
Installation of point with with station with
an outdoor communic communic communica
electrical ation, ation, tion,
plug for EV protections protections protections
charging and and and
EV-15: protected by eventually eventually eventually
Electrical |[EV a differential solar solar solar
vehicle [charging [circuit production production production
charging |capacity |breaker 184 |control. 996 | control. 1639 control. 1639
Installation
of
occupancy
MC-9: Installation of detector
Occupanc [occupancy for control
y detector for of lighting
Monitorin |detection: |control of AND
g and connected [lighting OR heating or
control  |services |[fan coils 250 [fan coils 430
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6.2.3. Sensitivity analysis for the SRIA

Methodology
In order to always consider the same list of services, all services from the

catalogue A or B are considered applicable (which is a virtual situation, as some
services are mutually exclusive).

The corresponding impacts of each service upgrade from O to the next level, up to
the smartest ones is considered for 40 cases, each case being defined by:

The focus chosen by the user (4 possibilities):

0. Impact on overall SRI score

1. Impact on key functionality 1 (efficiency)

2. Impact on key functionality 2 (occupant)

3. Impact on key functionality 3 (flexibility)

The building type (2 possibilities):

1. Residential

2. Non-residential

The climate zone (5 possibilities):

Northern Europe (NE)

Western Europe (WE)

Southern Europe (SE)

North-Eastern Europe (NEE)

South-Eastern Europe (SEE)

The impact of smartness upgrades for each service is then calculated for every of
the 40 cases considered and results are compared.

The sensitivity analysis is presented in the form of graphs, illustrating the range of
the impact of upgrading each service from zero to the smartest level. In other
words, the graphs show to which extent the impact of the upgrade of each
service from O to the smartest level (2, 3 or 4) varies according to the 5 climate
zones. The graphs read as follows.

Figure 73. How to read the graphs in the sensitivity analysis

For the clirmate zone in which For the climate zone in which
upgrading this service has the upgrading this service has the
lowest impact, this impact is 5,3%. highest impact, this impact is 7,3%.

% ™ % /8%
. »
E=====0
K

The median value is 7%, meaning in hall of the chmate
zones, upgrading this service from 0 to the smartest
fevel has an impact on the SRI score lower than 7%;
and in the other hall, the impact is higher than 7%
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Results for service catalogue A

The figure below shows the impact on the overall SRI score of upgrading each
service from zero to the smartest level. For instance, for a residential building,
upgrading the service H-2b “Heat generator control (for heat pumyps)” from O to 3
(highest level) has an impact of 7.7% on the overall SRI score in the South-Eastern
Europe (SEE) climate zone, while it has an impact of 13.1% in the Western Europe
(WE) climate zone. More generally speaking, and logically, the variations are
higher for the domains related to climate aspects (heating, domestic hot water,
cooling, electricity). Variations are also higher for residential buildings than non-
residential ones.

Figure 74.Variability of the impact on the overall SRI score of the 0-to-
smartest-level upgrade for each service of catalogue A for all climate zones,
for residential buildings (left) and non-residential buildings (right)
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However, despite this variability, the list of service upgrades with the highest
impact is relatively stable.
Upgrading services H-1a, H-2b, V-1a and MC-13 from O to the smartest level always
have a high impact, for all climate zones and building types. Upgrading services
H-1c, H-3, C-4 and MC-25 from O to the smartest level also have high impact in
most cases.
By contrast, upgrading services L-1a, DE-4, EV-15, EV-16 and EV-17 from O to the
smartest level always have a very low impact on the overall SRI score, for all
climate zones and all building types, even more so for incremental upgrades from
level O to level 1, level 1 to level 2, etc. As a result, it is quite unlikely that upgrading
these services will be advised to level up the overall SRI score - except if all other
services already score very high.
Looking more particularly on upgrade impacts on each of the 3 key functionalities
(see figure below), the following facts are observed from the data:
o There is a high variability in the results for the key functionality 1 on
efficiency. However, upgrading the services H-1a, H-2a, H-2b, H-3, MC-
13 and MC-30 most often has a high impact. By contrast, upgrading
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the services H-1c, DHW-1b, E-3, EV-15, EV-16 and EV-17 has zero or
close-to-zero impact on this key functionality.

o The impact on the key functionality 2 on occupants is not sensitive at
all to climate zones and building types (no variability in the
corresponding graphs). Upgrading from O to the smartest level the
services H-la, DHW-3, C-4, V-la, V-6, DE-1 and MC-13 always is
impactful. By contrast, upgrading services H-1c, H-3, DHW-1a, DHW-1b,
E-3, EV-15, EV-16 and MC-25 always have a very low impact on this
functionality.

o There is a very high variability in the results for the key functionality 3
on flexibility. However, upgrading the services H-Ic, H-2b, DHW-1a,
DHW-1b, C-4, EV-16 and MC-25 most often has a high impact. By
contrast, upgrading the services H-1a, H-2a, H-3, DHW-3, C-1a, C-3, V-1a,
V-6, L-1a, DE-1, DE-4, E-2, E-T1, E-12, EV-15, MC-13 and MC-30 has zero or
close-to-zero impact on this key functionality.
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Figure 75. Variability of the impact on each key functionality
for each service of catalogue A
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Results for service catalogue B

The next figure shows the impact on the overall SRI score of upgrading each
service from zero to the smartest level, for catalogue B. As it was observed for
catalogue A, the variations are higher for the domains related to climate aspects
(heating, domestic hot water, cooling, electricity). Variations are also higher for
residential buildings than non-residential ones.

Figure 76. Variability of the impact on the overall SRI score of the O-to-
smartest-level upgrade for each service of catalogue B for all climate zones,
for residential buildings (left) and non-residential buildings (right)

Tl

o —
—_
—
e

T —

L "
P ——
e ——

[

= ]

|

P ——
e =" ] o
e ity
= -
e
[ S— ) 3

!

il

|
|

i
s

all

H”” | |l||"uu9'f='u.|u||ﬂut

EEERRARRETT -
ESSCsastnn s2REE

BARRRgaa2es-.
SERCoAsAEsD
L

....................

However, despite this variability, the list of service upgrades with the highest
impact is relatively stable. Indeed, upgrading from O to the smartest level the
services H-1a,H-2b, H-2d, H-3 and H-4 in the heating domain, and MC-3, MC-4, MC-
9 and MC-13 in the monitoring & control domain always have a high impact, for all
climate zones and building types. Upgrading services H-1b and H-1ffrom O to the
smartest level also have high impact in most cases. By contrast, upgrading
services H-1c, H-1d, H-2a, C-1c, C-1d, C-1f, C-2a, C-2b, C-3, V-Ic, L-1a, DE-2, DE-4, EV-15,
EV-16 and EV-17 always have a very low impact (< 1%) on the overall SRI score, for
all climate zones and all building types. As a result, it is quite unlikely that
upgrading these services will be advised to level up the overall SRI score - except if
all other services already score very high. Finally, there is a significant difference in
the impact of upgrading services in the electricity domain depending on the
building type (residential or non-residential).
The next figures illustrate the impact of service upgrades on each of the 3 key
functionalities. It is observed that:
o There is a high variability in the results for the key functionality 1 on
efficiency. However, upgrading the services H-1a, H-1b, H-2d, H-3, MC-4,
MC-9, MC-13, MC-25, MC-28, MC-29 and MC-30 always is impactful. In
the electricity domain, upgrading services E-2, E-11 and E-12 always is
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impactful for residential buildings, but is never impactful for non-
residential buildings. It is the opposite for service C-3, the upgrade of
which being impactful on the efficiency score for non-residential
buildings, but only in one region (SEE) concerning residential
buildings.

o Concerning key functionality 2, as previously explained climate zones
play no role in the impact of service upgrades. The services with the
highest impact (= 4%) on this functionality are H-1b, C-1b, V-1a, V-6, L-2,
DE-1, MC-4 and MC-13.

o Finally, concerning key functionality 3, a limited number of service
upgrades impact the flexibility subscore, but in this case, the impact
can be very high (> 10%); the concerned services are in the heating,
DHW, cooling and M&C domains. However, there is a more significant
variability of this impact in the residential sector than in the non-
residential sector.
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Figure 77. Variability of the impact on key functionality 1 of the O-to-smartest-
level upgrade for each service of catalogue B for all climate zones, for
residential buildings (left) and non-residential buildings (right)
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Figure 78. Variability of the impact on key functionality 2 of the 0-to-smartest-
level upgrade for each service of catalogue B for all climate zones, for
residential buildings (left) and non-residential buildings (right)
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Figure 79. Variability of the impact on key functionality 3 of the O-to-smartest-
level upgrade for each service of catalogue B for all climate zones, for
residential buildings (left) and non-residential buildings (right)
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6.3. IS4 Annex

This annex presents the indicative forecasts of demand-side flexibility limits for
the energy consumption sub-clusters of CERTH offices and Mpodosakeio Hospital.
These forecasts are generated by the IS4 system, which utilizes data on energy
consumption, weather conditions, and corresponding data from the previous day.
The following figures illustrate the flexibility limits for increasing (blue) and
decreasing (red) energy consumption, as well as the forecasted energy
consumption (green). These results represent a one-day forecast with hourly
granularity. At points where the three waveforms overlap, there is no available
flexibility.

Uphlex, Damrd lex, and Ssselne over Time - CERTH Offices - Temperatos Quster O - Eneegy Scboluster

Dutotirw

Figure 80:Predicted Demand side flexibility bounds for the second energy
consumption sub-cluster of CERTH Offices (up- flexibility bound (blue), down-
flexibility bound (red), baseline (green))
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Figure 81: Predicted Demand side flexibility bounds for the third energy
consumption sub-cluster of CERTH Offices (up- flexibility bound (blue), down-
flexibility bound (red), baseline (green))

UpHiex, Domnfisg and Baseline cvnt Thne - CERTH Ofces - Terowrature Ouster 0 - Enargy Subciuster 3

Figure 82. Predicted Demand side flexibility bounds for the fourth energy
consumption sub-cluster of CERTH Offices (up- flexibility bound (blue), down-
flexibility bound (red), baseline (green))
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Figure 83. Predicted Demand side flexibility bounds for the fifth energy
consumption sub-cluster of CERTH Offices (up- flexibility bound (blue), down-
flexibility bound (red), baseline (green))

UpFax. DewnFlex, and Sasoine over Time - CERTH Offices - Temgerature Cluster 1 - Energy Subdiuster: 1
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Figure 84: Predicted Demand side flexibility bounds for the sixth energy
consumption sub-cluster of CERTH Offices (up- flexibility bound (blue), down-
flexibility bound (red), baseline (green))
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Figure 85:Predicted Demand side flexibility bounds for the second energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))

Up#Fles. Domnflex, and Baseline over Time - Mpodosakeo Hospial - Terperoture Cluster: 0 - Energy Subcluster: 2

Datetime

Figure 86:Predicted Demand side flexibility bounds for the third energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))
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Figure 87:Predicted Demand side flexibility bounds for the fourth energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))
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Figure 88:Predicted Demand side flexibility bounds for the fifth energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))
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Figure 89:Predicted Demand side flexibility bounds for the sixth energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))
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Figure 90:Predicted Demand side flexibility bounds for the seventh energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))
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Figure 91:Predicted Demand side flexibility bounds for the eigth energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))
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“hd

¥etal Cneeyy

N

—————e———— e

—

Datetinre

Figure 92:Predicted Demand side flexibility bounds for the ninth energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))
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Figure 93:Predicted Demand side flexibility bounds for the tenth energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))

UpFlex. Domnfiex. anid Baseline cyer Time - Mpodosskeo Hospral - Temperature Cluster 1 - Energy Subs luster: 3
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Figure 94:Predicted Demand side flexibility bounds for the eleventh energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))
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Figure 95:Predicted Demand side flexibility bounds for the twelfth energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))
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Figure 96:Predicted Demand side flexibility bounds for the thirteenth energy
consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue),
down-flexibility bound (red), baseline (green))
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