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EXECUTIVE SUMMARY 

This deliverable consolidates the technical developments and achievements of 
Tasks 4.1 and 4.2 within the EVELIXIA project. As the first version of D4.2, it 
integrates advancements in building situation awareness, forecasting, and 
autonomous decision-making mechanisms at the building level. These 
developments aim to enhance building-to-grid interaction through digital twin 
technologies and advanced decision-support systems. 
 
The activities under Task 4.1 focus on creating the Building Awareness and 
Forecasting Toolbox, a comprehensive platform that integrates a state-of-the-art 
simulation engine, real-time sensory data, and hybrid models to enable advanced 
forecasting and situation assessment. Key components include indoor air quality 
monitoring, demand forecasting, flexibility prediction, and simulation-based 
building energy modelling. The outcome is a multi-dimensional digital tool 
capable of assessing several building vectors and dimensions, serving as a virtual 
testbed for validating various control scenarios. 
 
Under Task 4.2, the Autonomous Building Decision Support Toolbox has been 
developed to provide stakeholders with actionable insights for energy 
optimization, demand planning, and investment evaluation. Leveraging the 
simulation capabilities of the Building Digital Twin resulted from Task 4.1, this task 
integrates innovative approaches such as reinforcement learning, multi-timescale 
model predictive control, and ensemble decision-tree models. These methods 
support services such as day-ahead demand planning, real-time load control, and 
investment planning, rendering the digital twin autonomous in its decision-
making capabilities. 
 
The deliverable also details the individual service implementations (IS1-IS7 and 
IS9-IS10), including their current initial version towards achieving the described 
goals. These services address critical aspects such as: 
 
Indoor Air Quality Monitoring (IS1): Energy costs optimization while ensuring 
acceptable indoor environmental conditions (CO₂ and temperature) taking into 
account occupant’s window-opening behaviour. 
Energy Assets Maintenance (IS2): Maintenance scheduling and failure 
anticipation for the battery cooling system, from the chiller to the emitters, 
including the room containing the batteries (IS2-1). Detection of limescale 
deposits in hot water tanks, whether equipped with electrical heaters or heat 
exchangers (IS2-2). 
Monitoring and forecasting of battery state-of-health and remaining life of the 
battery providing (IS2-3). 
Demand Forecasting (IS3): Prediction of electricity, heating and gas networks 
consumption and production especially for non-dispatchable plants. 
Flexibility Forecasting (IS4): The service will be used for proactively assessing and 
forecasting the levels of demand flexibility – focusing on both thermal and 
electricity demand - at the building level. 
Building Energy Modelling and Simulation (IS5): The simulation engine 
(modelled multi-vector energy digital twin) uses real-time data and BIM to create 



 

   
 

hybrid digital twins, combining physics-based and data-driven models for 
scalable energy and performance analysis across buildings. 
Building Investment Planning Assistant (IS6): Performs real-time LCA and LCC 
analyses, optimizing CAPEX, OPEX, and environmental benefits to support 
strategic energy investments and grid decongestion. 
SRI Advisor (IS7): Offers tailored recommendations to improve SRI scores, 
analyzing upgrades and flexibility scenarios for cost-effective energy efficiency 
and comfort enhancements. 
Proactive Demand Planning (IS9): This service reshapes day-ahead demand 
using episodic reinforcement learning and cost-benefit matrices, enabling energy 
cost savings without compromising efficiency. 
Continuous Energy Performance Management (IS10): Real-time operational 
control to optimize energy supply-demand matching and grid stability. IS10b is 
dedicated to control the buildings HVAC systems with the constraint of ensuring 
the thermal comfort. 
 
The outcomes of this deliverable demonstrate potential for replication across 
various building types and operational scenarios. The generalization of models, 
coupled with advanced simulation and data-driven methods, ensures adaptability 
and scalability. While case-specific customizations are necessary for factors such 
as climate conditions, building systems and stakeholder needs, the 
methodologies and tools are broadly applicable. 
 
The barriers encountered include data integration challenges, service 
interconnections, and operational variability. Requirements for implementation 
include access to real-time data, computational resources for simulation and 
decision support, and stakeholder engagement to ensure adoption. The primary 
channels to promote these solutions include technical workshops, policy advisory 
groups, and publications in scientific and industry forums. 
 
By addressing key European goals in energy efficiency, sustainability, and smart 
grid integration, this deliverable sets the foundation for innovative and 
autonomous building management solutions with important potential for real-
world impact. 
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1. INTRODUCTION AND OBJECTIVES 

1.1. Scope and objectives 

This deliverable, D4.1, is part of Work Package 4 (WP4) within the EVELIXIA 
project, consolidating the initial developments under Tasks 4.1 and 4.2. As the first 
version of Autonomous Building Digital Twins report, D4.1 provides an alpha-stage 
framework for building-level situation awareness, forecasting, and autonomous 
decision-making mechanisms. It establishes the foundation for subsequent 
iterations and refinements, culminating in D4.2 (final-updated version). An 
overview diagram placing Tasks 4.1 and 4.2 within the EVELIXIA project is 
depicted in Figure 1. 
The scope of D4.1 is focused on conceptual design and early technical 
developments of the tools and methodologies needed to enhance building-to-
grid interactions. This includes the development of initial algorithms, simulation 
models, and service architectures for energy forecasting, flexibility assessment, 
and decision support at the building level. While implementation and real-time 
data integration are planned for future stages, this version prioritizes establishing 
theoretical underpinnings and defining technical requirements alongside with 
initial stages of results. 
The objectives of D4.1 are to: 

• Lay the groundwork for the Building Awareness and Forecasting Toolbox 
(Task 4.1) by creating initial models, simulation engine and methodologies 
for energy performance assessment, air quality monitoring, and demand 
forecasting. 

• Define the architectural and methodological framework for the 
Autonomous Building Decision Support Toolbox (Task 4.2), focusing on 
decision-support strategies such as demand planning and energy cost-
benefit evaluation. 

These early developments set the stage for future validation and implementation 
phases, aligning with EVELIXIA’s long-term objectives of energy efficiency, grid 
flexibility, and smart building integration. 
 

 
Figure 1. Overview Diagram 
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1.2. Structure 

The structure of this deliverable reflects its alpha-stage focus, emphasizing the 
theoretical and conceptual foundations for the tools and methodologies to be 
developed in Tasks 4.1 and 4.2. The report is organized as follows: 
 

• Introduction and Objectives: Provides the context, scope and objectives of 
D4.1 along with its alignment with project goals. 

• EVELIXIA’S Building Awareness and Forecasting Toolbox: Outlines the 
technical framework of the alpha-stage version of the involved services in 
Task 4.1 (IS1-IS5),including their targeted functionality and roles within the 
project framework. 

• EVELIXIA’S Autonomous Building Decision Support Toolbox: Outlines 
the technical framework of the alpha-stage version of the involved services 
in Task 4.2 (IS6-IS7 and IS9-IS10), including their targeted functionality and 
roles within the project framework. 

• Conclusions: Summarizes the acquired knowledge while also the planned 
activities for future iterations, focusing on the transition from conceptual 
models to implementation and validation in D4.2. 

1.3. Relation to Other Task and Deliverables 

D4.1 is directly linked to Tasks 4.1 and 4.2 under WP4, serving as the initial version 
that consolidates early developments and frameworks for the Building Awareness 
and Forecasting Toolbox and the Autonomous Building Decision Support Toolbox. 
Task 4.1 focuses on the conceptual design of tools for energy modelling, demand 
forecasting, and flexibility assessment. These outputs form the basis for Task 4.2, 
which extends the toolbox to include decision-support mechanisms. Both tasks 
offer the Building-level structure of EVELIXIA’s project. 
This deliverable is pivotal for guiding future project activities, as it defines the 
technical requirements and architecture for subsequent iterations. While D4.1 
does not yet include real-time data or implementation but instead provides a 
foundation for these aspects to be integrated in D4.2. The outcomes of D4.1 will 
inform further developments across WP4 and other work packages, ensuring 
alignment with the EVELIXIA project’s broader objectives. 
Additionally, D4.1 sets the stage for collaboration and knowledge sharing among 
project partners, facilitating the transition to the next validation and 
implementation phases. The deliverable represents a first step toward achieving 
the established goals of WP4, contributing to a cohesive and scalable framework 
for building-to-grid interactions. 
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2. EVELIXIA’S BUILDING AWARENESS AND FORECASTING 
TOOLBOX 

2.1. Introduction 

EVELIXIA’s Building Awareness and Forecasting Framework (BAFF), developed 
under Task 4.1, serves as a key component within the Innovation Pathway 1 
(IP1):Building-to-Grid (B2G) Services, aiming to enhance the interaction between 
buildings and the energy grid. The BAFF is designed to provide a comprehensive 
suite of services that enable detailed building energy profiling, advanced 
forecasting capabilities, and improved situational awareness. By integrating real-
time data from building sensors, static information (such as BIM data), and 
external environmental parameters, the BAFF supports the development of 
Autonomous Building Digital Twins (ABDT) that accurately reflect building 
operations and energy behaviour. 
The toolbox operates in synergy with the Autonomous Building Decision 
Support Framework (ABDSF), enabling intelligent, model-based and data-driven 
decision-making that aligns with occupant preferences, operational 
requirements, and grid demands. Together, BAFF and ABDSF form the backbone 
of EVELIXIA’s strategy to transform buildings into Buildings as Active Utility 
Nodes (BAUNs)—dynamic, responsive entities capable of participating in energy 
markets, optimizing consumption, and enhancing grid stability. 
Task 4.1 focuses on the development, integration, and demonstration of five 
Innovative Solutions (ISs)within the BAFF. Each solution targets a distinct aspect 
of building energy awareness and forecasting: 

• IS1 - Indoor Air Quality (IAQ) Service:Optimizes energy costs while 
ensuring acceptableindoor environmental conditions (CO₂, humidity, 
temperature) taking into accountoccupant’swindow-opening behaviour. 

• IS2 - Energy Assets Maintenance: Evaluates operational performance, 
equipment health, and battery aging to schedule timely maintenance and 
to optimize microgrid-connected assets. 

• IS3 - Local Energy Consumption and Generation Forecasting: Provides 
predictive analytics for electricity, heating, and gas loads at both building 
and district scales. 

• IS4 - Thermal and Electricity Flexibility Forecasting: Assesses the 
flexibility potential of shiftable loads, supporting demand response and 
grid-interactive operations. 

• IS5 - Building Energy Modelling and Simulation: Utilizes physics-based 
and data-driven models to develop hybrid digital twins, enabling energy 
performance simulations, demand flexibility analysis, and seamless 
integration with other EVELIXIA services. 

 
Each of these ISs is described in detail in the following subchapters, outlining their 
objectives, methodologies, current results and next steps. 
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2.2. Indoor Air Quality forecast (IS1) 

The current innovative solution so-called IS1 is an original tool developed by the 
CEA through the EVELIXIA project. The IS1 developed by CEA intends to forecast 
the CO2 concentration in the building for the near future, taking into account a 
realistic window-opening behaviour of occupants using a machine learning 
approach, while respecting the thermal comfort and minimizing the energy costs. 
The IS1 can also be used to provide flexibility by reducing the ventilation rate. 

2.2.1. Objectives 

Indoor Air Quality as IAQ has been a major concern in buildings for decades with 
the emergence of the Sick Building Syndrome (SBS). However, IAQ is also strongly 
correlated with the energy bill, and the earliest B+ or Net-Zero buildings led to a 
drop in IAQ levels due to over-tightness and poor air change. This ambiguity raises 
the problem of how to reduce the energy consumption while ensuring the 
thermal comfort and air quality in the context of global warming. 
As part of the EVELIXIA project, CEA is developing a predictive IAQ model. In this 
innovative solution IS1, the main challenge is to anticipate the occupants’ 
behaviour in terms of window opening in response to weather and indoor 
conditions, among other factors. The aim is to offer flexibility based on heating, 
ventilation and air conditioning (HVAC) systems and to enable better optimization 
with an energy management system (EMS), for example the innovative IS10b 
solution developed in the same project. 

2.2.2. Methodology 

CEA is developing a predictive IAQ model in Python. The model encompasses four 
different items: 

• A predictive window-opening model based on a Machine Learning 
approach and on the scikitlearn library in Python. This predictive model 
aims to emulate the window-opening behaviour over a short time-horizon 
(a few days). The window-opening model is based on a Logistic Regression 
approach. It is trained repetitively with historical data from the field to be 
adapted to the season and occupant changes, before coupling with the 
Mixed Integer Linear Programming (MILP)optimization model (see Figure 
2). 

• A building model dedicated to estimate the air change across the 
building when the windows are opened and the indoor air temperature as 
function of the window-opening scenario. A first step is to identify the 
thermal features of the building when the openings are closed and the 
rated mechanical ventilation is running. The building model can be either a 
simple model based on an electric analogy, also called RC-type model 
developed in Python or Matlab (see in section 3.5.2), or a DTS model such as 
the Building VE supported by the IS5 “Building Energy Modelling and 
Simulation” within the project. 

• A model is implemented to calculate the indoor CO2 exposure 
depending on the CO2 sources from outdoors and indoors, the occupancy 
schedule and the air change ratio (mechanical and natural). 
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• At last, an optimization model, Mixed-Integer Linear Programming 
(MILP), to enable minimizing a cost function depending on IAQ including 
indoor CO2exposure, thermal discomfort, as well as the energy cost. This 
tool is intended to draw the trajectory of a window-opening schedule 
consistent with occupants' behaviour and the energy consumption 
throughout the HVAC systems. The predictive trajectory will be planned 
regularly over the horizon time of two or three days. This sub-model 
embeds two other programs as follows: the RC-type building model also 
calibrated on thermal features and air change rate, the CO2 predictive 
model. It is coupled to the window-opening model trained previously. 

 

 
Figure 2. IS1 work flow 

The training data necessary for the machine learning methodology comprises 
explanatory variables such as outdoor temperature, rainfall, wind speed and 
direction, indoor temperature, indoor relative humidity, indoor CO2 exposure, 
without any order of importance. In parallel, the following variables set the 
contextual: window state (opening or closed), window orientation, movement 
detection sensed to represent the occupancy, considered office, season, time of 
the day. The time step for calibrating the window-opening behaviour is 10 
minutes maximum. The predicted variable may be either the window state (open 
or closed) or the action (opening or closing the window), deduced from the same 
explanatory window state variable. Obviously, the training data for both of these 
problems suffer from an imbalanced amount of data between each position or 
action. CEA is testing “class_weight” and “under sampling” solutions to fix this 
recurrent issue in machine learning methodology. CEA continues fine-tunning 
the model to improve the window-opening behaviour predictions. CEA also 
intends to go more in depth using the “ShuffleSplit” and “cross_val_predict” tools. 
 
The building model could be a RC type model 5R1C for 5 resistances + 1 heat 
capacity (see in section 3.5.2) or a DTS model. It will be featured with the static 
data defined in the standard ISO 13790:2008, such as the conditioned floor area, 
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the total area that is the addition of all surfaces (walls and floors) facing the 
building zone considered, the effective mass area, the heat capacity class of the 
building, ceiling height. All the data needed to create the DTS model is expected 
to be found in the IS16 “Digital Building Logbook”. The building model will be used 
to identify at a first step, the thermal characteristics of the building or office, in 
particular the heat transfer coefficients of the model. This calibration requires to 
feed the model with historical data as time series: solar heat gain based on the 
effective collecting areas of the building under consideration and corrections due 
to solar shading caused by the surrounding masks, internal heat gain due to 
activity inside the building, outdoor dry air temperature and supply air 
temperature if an energy recovering system exists, the mechanical ventilation 
rate across the building, indoor temperature setpoints for each time step, energy 
consumption, the occupancy and CO2 flow rate from hypothetic sources. 
Calibration of the building’s thermal behaviour must be carried out using data 
from periods when all windows are closed. 
 
At a second stage, the model will be reversed to estimate its ventilation-related 
heat transfer coefficient, and thus the air change rate, according to the thermal 
characteristics identified at the previous stage and to the variation of indoor air 
temperature. The building’s air change rate must be identified when several 
windows are open. Consequently, the building model can be configured to 
predict the indoor air temperature and natural ventilation rate for the near future. 
An alternative to this method might be to calculate the air change rate based on 
historical data showing drops of CO2 concentration when windows are open. It 
might be more accurate but requires the considered rooms, offices to be 
equipped with CO2 sensors. Then, the optimization model set up with the 
aforementioned identified parameters can run, coupled to the window-opening 
model, to determine the indoor air temperature time series obtained with realistic 
window-opening behavior, and thus minimize the objective function such as the 
sum of energy costs, discomfort costs and CO2 exposure costs by leveraging 
temperature and CO2 difference potentials from the outside. The building energy 
consumption variable enables to solve this optimization problem, such as for the 
EMS described in section 3.5.2 (see IS10b). 
Afterwards, the estimated air change rate is sent, during the window opening-
periods to the brick model calculating the predictive CO2 concentration in the 
rooms. The calculation of indoor CO2 exposure is deduced from the general 
formula: 
 

𝑑𝐶

𝑑𝑡
+ 
𝑄𝑒 + 𝑄𝑖

𝑉
× 𝐶 −

(𝐶𝑒 × 𝑄𝑒 + 𝑄𝑖)

𝑉
= 0 

 
where: Ce is the pollutant concentration of the air ventilated across the volume V 
with the flow rate Qe, Qi is the indoor pollutant source flow rate and C is the 
pollutant concentration into the volume V at each time step t. 
Dynamic data are necessary to initialize the various calibration steps and to detect 
any deviations by comparison with the results of the predictive IAQ model. 
This predictive IAQ model will allow for the possibility of shutting down the 
building ventilation system in the near time horizon in compliance with the 
thermal comfort and IAQ. 
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2.2.3. Evaluation & Results 

The predictive window-opening model in development has been trained with 
historical data measured in the so-called HELIOS, CEA office building, located in 
Le Bourget-du-lac (F-Savoie) and cooled by cross-ventilation. The data set used for 
the machine learning predictive window-opening model covers the year 2022. 
After training the machine learning model on all this period, CEA tested to split 
the year 2022 into different seasons, with best results in particular for mid-season 
periods. 

## TODO: SELECT THE PERIOD (date start and date end) OF THE YEAR TO FEED THE MODEL 

dstart = datetime(2022, 3, 21) 

dend   = datetime(2022, 6, 21) 

dfc    = dfc[(dfc.index >= dstart) & (dfc.index < dend)] 

CEA also addresses the time of day as a factor that influences window opening. 

dfc['DAYTIME'] = dfc['DAYTIME'].where(~dfc.index.hour.isin([19, 20, 22, 23, 0, 1, 2, 3,  

                                                            4, 5, 6]), 'Out') 

dfc['DAYTIME'] = dfc['DAYTIME'].where(~dfc.index.hour.isin([7, 8, 9, 10, 11, 12, 13, 14,  

                                                            15, 16, 17, 18]), 'In') 
 

This parameter can be fine-tuned according to the type of occupant (residential 
or office buildings). It also allows to filter the data by considering only the period 
when the building is assumed to be occupied, in case of a lack of occupancy 
information. CEA has been continuously monitoring its offices for many years. At 
this stage, CEA used real data from three offices among its premises. 

## TODO: SELECTION OF OFFICES TO BE INVESTIGATED AMONG '3033'(CLIMATISE), 
'3071'(ATRIUM), '3072', '3105' 

N_office = ['3071', '3072', '3105'] 
 

Various sets of training data have been tested. The explanatory factors used in this 
approach are as follows without any order of importance (see the results below): 
outdoor temperature, indoor air temperature, wind speed, rainfalls, time of the 
day and office reflecting both the occupant behaviour and the exposure of the 
office. The last two are contextual categories, while the predicting variable is the 
window status. 

# ['CO2 AMBIANT', 'DIRECTION DU VENT', 'T AMBIANTE', 'T EXTERIEURE', 'VITESSE DU VENT', 

#  'PLUIE', 'RAINFALL', 'RAINS', 'INFO PORTE OUVERTE', 'SEASON', 'DAYTIME', 'OFFICE#'] 

dfcc = dfcc.drop(columns = ['CO2 AMBIANT', 'DIRECTION DU VENT', 'PLUIE', 'RAINS', 

                            'INFO PORTE OUVERTE', 'SEASON'])  

In [59]: y.name 

Out[59]: 'INFO FENETRE OUVERTE' 
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CEA set a “class_weight” attribute to alleviate the imbalanced window states 
problem. 
# log_reg = LogisticRegression(class_weight = 'balanced', random_state = 0).fit(X_train_scaled, 
y_train) 

 

log_reg = LogisticRegression(class_weight = {0:1, 1:2}, random_state = 0).fit(X_train_scaled, 
y_train) 

 
It is relevant to notice that the prediction results are more accurate with the 
class_weight ratio (= 2), rather than with the close-to-open ratio (> 5) calculated 
from the imbalanced field of data. 
 
In order to assess the efficiency of the machine learning model, CEA calculates 
the following indicators: 

• The real ratio of closed status over the open status compared to the 
predicted ratio on the same period by the calibrated model. 

• The global score defined as the number of predicted status events fitting 
the actual ones, for the training data only, the data for testing the model 
and for the whole period, also called primary test period 

• The f1scores that give the numbers of matches for both window open and 
closed status, for the training data and the data for testing the model 

 
A logistic regression was used for this application whose coefficients are as 
follows: 

LogisticRegression coeff: 

Index(['T AMBIANTE', 'T. EXTERIEURE', 'VITESSE DU VENT', 'RAINFALL', 'DAYTIME', 'OFFICE#'], 

      dtype='object'): 

[-0.67434053  1.26866081 -0.09063199 -0.07607217  0.35091588 -0.81611395] 
 

This result shows that the parameters that most influence the window-opening 
behaviour are, in decreasing order of importance, outdoor temperature, office 
category and indoor temperature, respectively with a positive and negative 
influence for the last two on the window opening status. It is important to note 
that the “office category” parameter of influence includes the occupant’s 
sensibility and behaviour, as well as the thermal features and orientation of the 
occupied office. The wind speed, the rainfalls and the time of day look less decisive 
factors. However, there is a bias due to the indoor temperature and the data 
management. The training data explored tend to force the predictive model to 
learn situations regardless of occupancy. The absence of occupancy information 
in the training dataset does not rule out situations where the indoor temperature 
rises due to the inability to manipulate windows in the absence of occupants for 
varying periods of time. This misleads machine learning. 
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ratio of closed to open - actual states: 

0.6825396825396826 

scores for train period : 

0.7296175220660347 

scores for test period : 

0.7307792887029289 

scores for primary test period : 

0.7298498875464198 

ratio of closed to open - simulated states: 

0.607843137254902 

f1scores for train period %C, %O : 

[0.79052805 0.61876008] 

f1scores for test period %C, %O: 

[0.79174674 0.61933814] 

f1scores for primary test period %C, %O: 

[0.7907721 0.61887544] 
 

Obviously, all the attempts carried out to train the predictive model entailed to 
better prognosis for closing status rather than for window opening status, due to 
the imbalanced question that is raised. 
In this case, it is noticeable that the predictive model tends to overestimate 
slightly the opening status. Figure 3 presents the gap between the window-
opening real status versus predicted (simulated) status. As some literature 
references emphasize( [1]; [2]), our predictive window-opening tends to 
overestimate the status of opening compared to the measured reality. The over-
prediction is visible in the next figures and raises the question of how to account 
for vacancy during the summer period. 
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Figure 3.Confusion matrix using Logistic Regression 

Figure 3 shows several discrepancies between the predicted window-opening 
status and the real ones. 
CEA carried out different tests to train the model: 

• Logistic regression 
• Decision tree 
• Random forest 

CEA also performed several ways to set the training data and to split it, as shuffle 
and cross validation Kfold. The Random Forest approach for a single office ‘3072’ 
and on the same season produced some fairly valuable results. By considering the 
traditional or activity-related vacancy periods and also by transposing the results 
to a macro-level granulometry to focus on opening predictions of a sufficient 
duration (it could be more than one hour), it seems possible to obtain a useful 
digital tool. 

## TODO: SELECTION OF OFFICES TO BE INVESTIGATED AMONG '3033'(CLIMATISE), 
'3071'(ATRIUM), '3072', '3105' 

N_office = ['3072'] 

rand_for = RandomForestClassifier(max_depth=4, random_state=0, class_weight={0:1, 1:2})  # 
1:int(c_o_ratio) 

 

In [64]: X.columns 

Out[64]:  

Index(['T AMBIANTE', 'T. EXTERIEURE', 'VITESSE DU VENT', 'RAINFALL', 'DAYTIME'], 

      dtype='object') 

 

In [66]: y.name 

Out[66]: 'INFO FENETRE OUVERTE' 
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Figure 4 below shows the roles of each explanatory variable in the window 
opening prediction using the Random Forest approach. 
 

 
Figure 4.Feature importances using Random Forest 

#Train accuracy : 0.803 

Test accuracy : 0.813 

ratio of closed to open - actual states: 

0.7067448680351907 

scores for train period : 

0.803452332448725 

scores for test period : 

0.8133333333333334 

scores for primary test period : 

0.80542915424468 

ratio of closed to open - simulated states: 

0.6753246753246753 

f1scores for train period %C, %O : 

[0.85775128 0.6821066 ] 

f1scores for test period %C, %O : 

[0.8664422  0.69010417]  
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In this example, it can be noticed that the French traditional holidays at the end of 
May result in an absence of window openings, whereas the model, which is fairly 
effective even though it is not yet trained with occupancy data, predicts more 
manipulations. The confusion matrix (Figure 5) between the true values of all the 
recorded situations and the predicted with the Random Forest is as follows: 

 
Figure 5.Confusion matrix using Random Forest 

2.2.4. Next Steps 

In order to improve the accuracy of the predictive window-opening model, CEA 
plans to work on another data set from the same existing office building. 
Otherwise, depending on the results to be obtained within the tool 
implementations at the pilot sites, CEA will endeavor to take a step forward by 
considering: 

• The gliding outdoor temperature in order to take into account the adaptive 
comfort and therefore the occupant’s behaviour, as an influencing dynamic 
parameter. This parameter will be calculated from the last few weeks and 
the successive average daily outdoor temperatures. 

• The day of the week, the orientation of the window in each monitored 
office and the vacancy periods, as influencing contextual parameters. 

• The use of indoor CO2 concentration and the temperature gap between 
indoors and outdoors as potential influencing factors. 

• Testing the Nearest Neighbours method as an alternative to Random 
Forest. 

• Further development of the “ShuffleSplit” and “cross_val_predict” functions 
and also the use of “under sampling” methods to improve the fit of the 
predictive window-opening model 

• Identification of the coefficient accounting the ventilation heat transfer in 
the building model. 

• The generalization of the method for estimating the air change rate to each 
office or room under consideration. 

 
Another opportunity is to transform the predicted opening status into flexibility 
potential. Considering start-up and shut-down times of the system, it could make 
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sense to flag up the flexibility potential when long enough time intervals for a 
stable window state are detected. For instance, it seems reasonable to consider 
an opening prediction of at least 30 minutes to authorize shutdown of the 
ventilation system. Finally, CEA aims to calibrate a multivariate model for each 
office analyzed separately. Regular calibrations are also planned, at a frequency 
yet to be defined (possibly monthly). This work is still in progress, with the 
objective of establishing a distributable methodology for obtaining predictive 
window opening model specifically fitted to the building under consideration. 
CEA is now looking forward to testing and training the model with real data 
coming from the pilot sites. A step further would be to add another component to 
this digital tool, evaluating the air change rate according to the weather 
conditions, and wind patterns in particular. As a last step, CEA will test the 
coupling between the energy management optimization tool and the window-
opening behaviour model. 

2.3. Energy Assets Maintenance(IS2) 

2.3.1. Battery cooling system monitoring (IS2-1) 

The current innovative solution so-called IS2-1 is an original tool developed by the 
CEA through the EVELIXIA project. The IS2-1 developed by CEA aims to anticipate 
any failure of the battery cooling system and to schedule timely maintenance by 
keeping a watchful eye on the entire system, from the chiller to the emitters, 
including the room containing the batteries. 

2.3.1.1. Objectives 

The IS2-1 is designed to monitor the state-of-health of the battery cooling systems, 
in particular those for battery containers that are charged to support the grid with 
Frequency Containment Reserve (FCR) or Automatic Frequency Restoration 
Reserve (aFRR). These services are crucial to the stability of electrical grids and 
require high level of availability and reliability. More generally, it is worthwhile to 
maintain a watchful eye on any battery energy storage system (BESS) that 
provides flexibility to the buildings or systems it powers’ is developing an IS that 
covers the entire cooling system, from the cooler to the emitters, including the 
ancillaries such as pumps and fans, as well as the temperature evolution 
monitoring of the battery room or container in its environment. Using its tool, CEA 
endeavors to detect deviations in the temperature of the air inside the room, gaps 
in the energy efficiency ratio (EER) of the chiller, and discrepancies in the energy 
consumption of all the equipment involved. Using this innovative IS2-1 solution 
should help operators and owners to schedule the maintenance operations and 
to anticipate critical failures. 
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2.3.1.2. Methodology 

The IS2-1 solution relies on the following participating programs, developed in 
Matlab coding language (see Figure 6): 

• An RC-type building model for simulating the thermal behaviour of the 
battery container or room housing the battery (see more details in section 
3.5.2). It is necessary to identify the thermal characteristics of this model on 
real data, before using the model to predict indoor air temperature 
variations in the course of the numerical resolution. The calibration 
operation will be reiterated continuously at a frequency yet to be defined 
(monthly or seasonally). 

• A chiller model based on standardized and proven data (from 
manufacturers’ data sheets) and on data measurement from the field. This 
model constitutes the table containing the reference efficiency values for 
various temperatures at both sides of the cooler, evaporator and condenser. 

• Another part of the code consists in keeping a close watch on the energy 
consumption of the various items of equipment, and on any potential 
deviation from expected energy flows. 

 
The need to anticipate a maintenance operation will be triggered by one of the 
following indicators. Energy consumption and cooling output are used to 
calculate the EER of the chiller at each time step. The calculated value is 
compared with the EER deducted from the chiller’s reference efficiency table. A 
difference between the calculated EER and the expected value, derived from 
table interpolation, signals to the operator the need to schedule a maintenance. A 
drop in the measured value relative to the expected effectiveness can result from 
various causes, such as: a lack of heat transfer fluid flow in the evaporator, a lack of 
refrigerant due to leakage, a fault on the compressor or on expansion valve. 
The gap between the indoor air temperature calculated by the container model 
(RC-type) and the actual recorded temperature is likely to reveal a malfunction in 
the cooling chain, from the chiller outlet to the room housing the batteries and 
inverters. Such a deviation may be caused by a lack of heat transfer fluid, cooling 
transmission problems, a lack of air circulation in the container, leakage, mixing 
valve issues, rotative machine failures. Other indicators such as discrepancies 
between the actual energy consumed by the ancillary devices and the energy 
expected according to data sheets or power-pressure-flow curves can inform the 
operator of a partial or total malfunction of the rotating machines (fans and 
pumps). 
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Figure 6.IS2-1 work flow 

 
The physics or data-based models required for the IS2-1 are fed by static and 
historical data provided by the pilot sites partners and by the equipment 
manufacturers. The RC-type model for the battery container will be set up with 
static data and calibrated with historical data on the indoor air temperature 
measured on the field. See the list of data below: 

• Static data related to the size, the structure and the thermal features of the 
40’ container available 

• Outdoor air temperature 
• Solar radiation received hour-per-hour by the individual surfaces of the 

container depending on its orientation and surroundings. The time series of 
solar radiation will be derived from meteorological data using our home-
made MATLAB program for thermal behaviour of buildings with a simple 
shape like the parallelepipedic container. The weather data needed will be 
retrieved from the Photovoltaic (PV) plant’s output or from the nearest 
weather station. 

• Energy flow supplied by the cooling system to the container inside. 
• Other internal loads due to the battery cells and inverters during charging 

or discharging, as well as heat gains from the transformer. 
• Air temperatures inside the container are additional historical data needed 

to identify the parameters of the container’s thermal behaviour model. 
Sensors must be installed in various parts of the container. 

 
The IS2-1 chiller model also requires static and historical data to be adapted to the 
use cases on each pilot site interested in and to operate properly. The following 
list of data is taken from the French pilot site, but a few less data among the 
continuous data would not be prohibitive: 

• Static data on the chiller is available but EER for different working 
conditions (evaporation and condensation temperatures) are still lacking. 
This information might be provided by CIAT or failing that, CEA will train a 
simulation model of the chiller based on historical data. This data-driven 
model should be a Linear Regression model. 
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• The historical and continuous data of the cooling system are as such: 
currents on each phase, apparent, active and reactive power of the chiller 
and of different groups of equipment (fans in particular), inlet and outlet 
temperatures and pressures, flow rate of the heat transfer fluid. CEA is still 
waiting for the conversion efficiency of inverter and of the transformer in 
order to estimate the energy flow transmitted inside the container or room. 

 
The outputs of the IS2-1 will be to inform end-users and owners of any deviations 
between measurements, performances and consumptions based on model 
predictions. 

2.3.1.3. Evaluation & Results 

At this stage, CEA is adapting the building model to the French pilot site for the 
40’ long following battery container (see Figure 7).There is not yet concrete 
results to show. However, the container model, the chiller model and the program 
to translate the meteorological data into solar radiations inputs are ready to 
adaptation. 

 

 
Figure 7.Section plan of the battery container (upper part) 

 and image of the cooling system (lower part) – French pilot site 
 
CEA has already experienced with monitoring the Coefficient Of Performance 
(COP) of heat pump systems for heat supply applications, in a similar way to the 
EER to be supervised for battery energy storage cooling systems in the EVELIXIA 
project  Figure 8, resulting from the so-called “iBECOME” European project (see 
https://ibecome-project.eu/) shows the deprecation of the COP over the time, 
produced by the heat pump model trained on dummy realistic data. This model is 
a linear regression model based on four explanatory variables: fluid temperatures 

https://ibecome-project.eu/
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at the evaporator inlet and outlet, outdoor temperature and compressor power 
consumption. 
 

 
Figure 8.Drop in coefficient of performance of heat pump over time 

 – iBECOME European project 

2.3.1.4. Next Steps 

CEA is currently collecting the static and historical data to fine-tune the RC model 
and the chiller models. The historical data and a few static data are still to be 
recovered from the pilot site manager or from the chiller’s manufacturer, even 
though various types and a large amount of data already exist. CEA will set up the 
container model according to the assets of the French pilot site in March 2025, 
fine-tuning the program to build the time series of solar radiations received by the 
container from the meteorological data. At the same time, CEA will also create the 
cooling system model from the manufacturer’s data sheet or from the historical 
data collected on the field. The first tests are expected to run in the spring 
2025.Another looming task is to identify the parameters that represent the 
thermal characteristics of the container. This work will be carried out between 
March and April 2025 and will aim at monitoring the battery cooling system on 
the French pilot. 

2.3.2. Limescale deposits detection in hot water tank (IS2-2) 

The current innovative solution so-called IS2-2 is an original tool developed by CEA 
through the EVELIXIA project. This innovative solution is meant to detect faults 
caused by limescale deposits on an electrical heating resistor or on the outside 
surface of a heat exchanger or fouling inside a heat exchanger coil. 
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2.3.2.1. Objectives 

The idea is to detect scale formation by monitoring the heating elements 
performance, rather than “seeing” the scale deposit with X-rays or such methods. 
When water in the tank heats up, calcium and magnesium ions dissolved in water 
precipitate by reacting with dissolved acid gases such as CO2, thus forming 
calcium or magnesium carbonate. The higher the temperature, the easier the 
scale formation [3].Scale accumulated on heat exchanger surfaces prevents heat 
transfers between the primary fluid and the water because it acts as an insulation, 
adding an extra thermal resistance. The heat exchanger efficiency is thus reduced, 
leading to a slower water heat up for the same heat flux coming from the primary 
side [4]. Likewise, fouling on the primary fluid side, i.e., inside the heat exchanger, 
adds a similar additional layer of insulation leading to the same decrease in 
efficiency. Moreover, fouling can also create pressure drops leading to a reduced 
flow rate on the primary side, which in turn hinders the heat transfer. 
When scale forms on an electrical heater, the insulation shell that it creates 
induces the generated heat to diffuse more hardly to the water, increasing the 
peak temperature reached by the heater. This can cause the thermostat safety 
threshold to trip and force the heater to shut down. It also damages the heater, 
which contributes to reducing its lifetime. However, if the deposit is not thick 
enough to overheat the device, it works in normal operation and the heating 
power remains unchanged, since all the generated power eventually diffuses into 
the water [5], [4]. 
Within the EVELIXIA project, IS2-2 could be used to monitor the real-time 
performances of on-site hot water tank (HWT) and plan their upcoming 
maintenance. Changes of actual performance and maintenance requirements 
can further be transferred to other innovative solutions such as an energy 
management system (EMS) or IS10b that deals with the predictive control of the 
energy loads inside the buildings. The IS2-2 might also offer potential flexibility to 
IS4 or IS10. 

2.3.2.2. Methodology 

The hot water storage tank model is based on the TH-BCE 2012 calculation 
method. It represents a storage tank along its vertical axis, assuming longitudinal 
symmetry. It can include a heat exchanger, an electric heater, or both as heating 
sources, and accounts for heat losses through the tank’s walls. It is made of 
several nodes, each of them defining a water layer. In practice, four nodes are 
most commonly used. Figure 9 represents the HWT layout as it is modelled. 
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Figure 9.Sketch of the hot water storage tank as defined in the model 

 
A simulation consists of three main actions being hot water withdrawal, cold-
water heat-up and temperature mixing between layers. During a withdrawal, hot 
water is discharged from the top to the bottom, and cold water replaces hot 
water, entering from the bottom. The temperature around the heater / heat 
exchanger then decreases, and if it reaches a lower threshold, the heat source 
switches on. While the heat source is on, the water in the layer where it is located 
heats up as: 

𝑇𝑤(𝑡) =
𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔(𝑡) − 𝑄𝑙𝑜𝑠𝑠(𝑡)

𝜌𝑤𝑎𝑡𝑒𝑟 . 𝑐𝑣,𝑤𝑎𝑡𝑒𝑟 . 𝑉ℎ𝑤𝑡
× 𝑑𝑡 

 
Where 𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔 is either the heater power for an electric heater or is calculated 
from solving the HX energy balance equation for a Heat exchanger. 
At each time step, when the water in the heat source layer becomes hotter than 
its upper neighbor, they mix and average their temperatures, and so on for all the 
layers above. This means that the model assumes perfect mixing inside the tank 
at the end of each time step (one minute in our simulations).The data required to 
conduct the present method are as follows. Data must be collected all along the 
operation. Sensor data should be provided, as far as possible, as time series with 
the shortest time step between values (ideally 1 minute). 
Required sensor data (provided as time series): 
• HWT temperature(s) (on as many locations as possible) 
• Electric heater instantaneous power 
• HWT withdrawal mass/volumetric flow rate 
• HX primary fluid mass flow, inlet and outlet temperatures  
• Cold water temperature 
• Ambient air temperature 

Required static data: 
• Hot water tank dimensions (at least volume and height) 
• HWT temperature setpoint 



 

EVELIXIA – D4.1 Autonomous Building Digital Twins                                                   20 
 

• If presence of an electric heating resistor, its rated power 
• Heat exchanger dimensions (at least height) and location inside the HWT 
• UAHX, given by the manufacturer (if possible) 
• Specific heat capacity of the primary heat transfer fluid circulating in the HX 

 
The first step of applying this method to a real HWT is to characterize it. The 
parameters that need to be characterized are the heat transfer coefficients. The 
losses coefficient, 𝑈𝐴𝐻𝑊𝑇,can be identified when the tank is at rest, i.e., it is not 
subjected to any heating nor withdrawal. During this period, the rate of the 
temperature drop is given by the heat losses coefficient. Sample measurements 
during periods when the tank is at rest followed by a linear regression (or another 
method such as Particle Swarm Optimization(PSO) should yield an approximation 
of this coefficient. The characterization can be performed regularly (weekly, or 
monthly to be defined yet) and the results averaged to obtain a more accurate 
value. 
 
Then, the scale detection is conducted as follows. For the heat exchanger, the 
expected fault symptom is a reduced heat transfer between the primary fluid and 
the stored water leading to lower heating power exchanged. The reduced heat 
transfer must be determined during a heat-up phase achieved by the heat 
exchanger only. 
There are then two cases. The first option is to monitor the following data: heat 
transfer fluid inlet and outlet temperatures and flow rate. Scale formation can 
then be detected by monitoring the HX heat transfer coefficient, 𝑈𝐴𝐻𝑋 ,and 
comparing it to its reference value. 𝑈𝐴𝐻𝑋  is defined in Equation (1) where 
𝑇𝑡𝑎𝑛𝑘,𝑚𝑒𝑎𝑛 is the mean temperature just above the HX, assumed homogeneous. 
 

𝑄𝐻𝑋 =  𝐿𝑀𝑇𝐷 ∗ 𝑈𝐴𝐻𝑋 =
𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑖𝑛 − 𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑜𝑢𝑡

𝑙𝑛 (
𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑖𝑛−𝑇𝑡𝑎𝑛𝑘,𝑚𝑒𝑎𝑛

𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑜𝑢𝑡−𝑇𝑡𝑎𝑛𝑘,𝑚𝑒𝑎𝑛
)
∗ 𝑈𝐴𝐻𝑋 (1) 

 
The primary side data give the heat flux transmitted to the stored hot water over 
the time steps, 𝑄𝐻𝑋(𝑡), according to Equation (2) , assuming the heat losses have 
been previously characterized. 𝑇𝑤 represents the average temperature inside the 
tank. 
 

𝑄𝐻𝑋(𝑡𝑖) =  𝑟ℎ𝑜 ∗ 𝑐𝑝𝑓 ∗ 𝑉 ∗
𝑇𝑤(𝑡𝑖+1) − 𝑇𝑤(𝑡𝑖−1)

2 ∗ 𝑑𝑡
+ 𝑄𝑙𝑜𝑠𝑠(𝑡𝑖)  ∀𝑖 ∈ [[2, 𝑛𝑡 − 1]] (2) 

 
Assuming 𝑇𝑡𝑎𝑛𝑘,𝑚𝑒𝑎𝑛is approximated by the hot water temperature measurement 
of the probe that is the closest to the HX, the same data give the LMTD, Equation 
(1). With enough measurement samples, plotting 𝑄𝐻𝑋 versus LMTD should give a 
scatter plot that can be approximated by a straight line with a slope equal to 𝑈𝐴𝐻𝑋, 
Equation (1). A linear regression should yield the expected value. 
 
The second option is that no primary side measurement is available and only hot 
water temperature measurements exist. In this case,𝑈𝐴𝐻𝑋cannot be determined. 
Instead, only the heat flux exchanged through the HX, 𝑄𝐻𝑋, can be monitored. A 
“day-1 measurement” of 𝑄𝐻𝑋 versus time for a set temperature rise is determined 
and will be used as the reference value. 𝑄𝐻𝑋is then calculated regularly and 
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compared to the reference. Alternatively, a trend can also be analysed. 𝑄𝐻𝑋 = 𝑓(𝑡) 
is determined from Equation (2). This should ideally be repeated for several 
temperature rises of different values in order to have multiple samples that can 
be compared to future similar measurements during the scale detection phase. In 
either case, monitoring a possible divergence of 𝑈𝐴𝐻𝑋  or 𝑄𝐻𝑋(𝑡, 𝑇𝑤) from their 
reference values should be a sign of HX degradation, and either will be used as a 
first fault indicator. 
 
For an electric heater, its heat flux transferred to the water is supposed to not be 
influenced by scale in theory, since it only depends on the power supplied to 
heater that does not change. Nevertheless, as the heater's temperature increases, 
its electrical resistance should also increase, since resistivity depends on 
temperature. This should consequently lower the power consumed by the heater, 
since𝑃𝑒𝑙𝑒𝑐 =  𝑈²/𝑅, where U is constant and equal to 230V. This power decrease, 
although possibly small, should still be detected via measurements of supplied 
electrical power. Since it is still uncertain whether this depends on the initial and 
final temperature of the heat-ups or not, heat up times will instead be monitored 
and associated to their corresponding initial and final heat-up temperatures in a 
table. The variation of 𝑃𝑒𝑙𝑒𝑐(𝑇𝑖𝑛𝑖𝑡, 𝑇𝑓𝑖𝑛𝑎𝑙) over the months will then be monitored for 
an electric heater, being the first indicator for an electric heater. Besides, in the 
early stage of scale build-up around the heat source, a visible effect should then 
be the appearance of a delay between the resistor start-up and the rise in water 
temperature. This also happens in a fault-free HWT, especially for an electric 
heater, since it needs to warm up itself during a transient state, but the 
phenomenon should be amplified due to the scale layer acting as an extra heat 
capacity between the heater and the water. This capacity needs to accumulate 
heat before transmitting it to the water during a transient phase. The transient 
phase duration can therefore be a second indicator, since it should increase as 
limescale accumulates on the heat source surface. Figure 10 illustrates this 
phenomenon. 

 
Figure 10. Expected temperature rises during the heater operation from the model (in 

blue), a real fault-free heater (orange) and a real scaled heater (red). 

 



 

EVELIXIA – D4.1 Autonomous Building Digital Twins                                                   22 
 

Finally, if the control thermostat is located close enough to the heat source, it 
might also be influenced by the scale deposits. The scale deposits could slow 
down the heat transfer from the heat source to the stored water, but not to the 
control thermostat. If so, the thermostat could prematurely shut down the heat 
source before the top of the tank actually attains the temperature setpoint. Once 
the heat has diffused into the water, the thermostat should restart the heat 
source until a next, possibly anticipated again, shutdown, and so on. Therefore, an 
excessive number of heaters starts and stops should be a third indicator of heater 
malfunction. This number can be compared to the model outputs that is run with 
the measurements of initial temperature, withdrawal profile and static data as 
inputs. The three above-mentioned indicators are calculated every day and 
compared to their reference values, which are either the model output or their 
values determined with historical data or during the first days of operation if no 
historical data are available. In practice, scale detection will be carried out thanks 
to a Matlab script that will compare the measured data (preferably previously 
converted into .csv or .txt format) with the reference values, for the above-
mentioned variables. The resulting differences will be stored in a memory, and if 
they are greater than a set threshold several times, then an alarm will be 
triggered. The threshold still has to be defined. 
 

 
Figure 11.IS2-2 work flow 
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2.3.2.3. Evaluation & Results 

Figure 12 presents some of the model outputs for a fault-free HWT. 

 
Figure 12.Model outputs for a fault-free HWT. From top to bottom, graphs show HWT 
temperature at four linearly spaced heights, DHW discharge, HX supplied heat and 

electric heater supplied heat 

Artificial data were created with the model to test the fault detection script. The 
data consist of the HWT temperatures during heat-up phases with variable heat 
exchanger heat transfer coefficients ( 𝑈𝐴𝐻𝑋 ). It is considered that four 
temperatures probes are available and linearly placed along the tank’s height. 
They were lightly altered with random noise and some short delay in order to 
mimic real-life measurements. Additionally, it is considered here that primary-side 
data are also available, in particular a time series for the HX outlet temperature. 
 
The data is fed to the fault detection script that performs the calculation of 𝑈𝐴𝐻𝑋 
according the steps presented in the Methods. Figure 13 presents the resulting 𝑄𝐻𝑋 
calculated according to the first step of the Method. Blue circles represent 𝑄𝐻𝑋 
derived from the hot water temperatures only, whereas orange crosses represent 
𝑄𝐻𝑋 derived from the primary side data. 
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Figure 13.Measured temperatures and derived QHX 

Subsequently, LMTD is calculated for each sample, according to the second step 
from the Methods, and a linear regression is carried out on 𝑄𝐻𝑋 vs LMTD for both 
options. This finally yields 𝑈𝐴𝐻𝑋 as the slope of the resulting line. 
 

 
Figure 14.Heat flux from the heat exchanger vs LMTD for both methods 

  and a linear regression made on each results to derive UAHX 

In this example case, measurement data were generated using 𝑈𝐴𝐻𝑋= 150 W/K. 
Despite the noise introduced, the program manages to approximate the value 
correctly with a 10% for the method using only hot water temperatures, and a 4% 
error for the method using HX data. This confirms that having HX primary data 
available will improve the detection accuracy. If this is not the case, only 𝑄𝐻𝑋(𝑡)will 
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be considered.This measurement (𝑈𝐴𝐻𝑋 or 𝑄𝐻𝑋(𝑡)) will be stored in memory for 
future comparison. Assuming that the initial measurements, on day one, gave a 
value of 200 W/K, and that the threshold was defined as a loss of 20% of original 
efficiency (or a loss of 40 W/K), this threshold will be triggered for the present 
measurement. If this value is found again during new detection phases (in the 
following days), for a certain number of times in a row, an alert will be sent to the 
user. 
 
Artificial data were also generated to simulate a faulty hot water tank equipped 
with an electric heater. To do so, the heater is forced to shut off after a certain 
time of operation, in some cases a shorter time than required to reach the 
temperature set point. Then, after some more time, the heater starts again, 
simulating a cool down in the zone where the control thermostat is located, due 
to the heat diffusing slowly into the tank. This results in an intermittent heater 
operation as it can be seen in Figure 15. The temperature consequently increases 
in a staircase shape, although the actually sensor measurements should show a 
smoother curve. The detection can be carried out on these curves by counting the 
number of starts and stops and comparing it to that of the fault-free model. Then, 
the average slope of each temperature rise can also be calculated and compared 
to the expected heater rated power, or the power measured during the 
implementation of IS2-2. Finally, transient state delay should be observable and 
measurable on the temperatures rises curves. 

 
Figure 15.Simulation of scale. From top to bottom, graphs show the water 

temperatures at four heights, DHW withdrawal, power delivered over time 
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2.3.2.4. Next Steps 

The IS needs to be tested on real-life data. 𝑈𝐴𝐻𝑋 identification can easily be 
performed on HWT tank data during a heat-up phase. CEA has some sort of such 
data. Some online data are also available since extensive research has been 
carried out on different aspects of water heating systems [6].The issue comes up 
regarding faulty (affected by a lot of scale) hot water tanks since available real-life 
fault-related data is scarce. Datasets of both fault-free and faulty HVAC systems 
exist, but they mainly include gas boilers [7], [8] which is not exactly what we are 
considering in the present analysis. Therefore, we hope to find experimental data 
of scaled or fouled HWT in the upcoming weeks or months in order to test our 
solutions. Perhaps the pilot sites will provide us with such data. Another aspect 
worth considering is the temperature stratification in hot water storage tanks. In 
fact, the present HWT model considers perfect heat mixture between each layer 
of the tank during the heat-up phase (if a lower layer is hotter than its upper 
neighbor is, they mix and average their temperatures). In practice, in some cases, 
hot water heated up by the heating element tends to rise and accumulate at the 
top of the tank, due to its lower density and this with little mixture. Layers appear 
where the hot water is concentrated in the upper layers, and the cold water 
remains at the bottom. This is clearly showcased by [6] who highlight in their 
experimental testbed a high degree of stratification in the tank and that tends to 
persist over time, both during the heat up and the cool down phases. However, 
other studies show rather the opposite phenomenon, as showcased in, e.g., [9], in 
cases B, C and particularly case A, in which no stratifier is used. The question 
remains on whether stratification will occur in the pilot sites tanks. If so, and if few 
temperature sensors are available, these few sensors might give a mistaken idea 
of the temperature field inside the tank, especially in the case where only one 
temperature sensor is available. Finally, CEA is also considering testing a home-
made model allowing to evaluate the withdrawn volume through the hot water 
tank, only using the following information: temperatures metered inside the tank 
and the energy consumed by the heater or the heat exchanger. 

2.3.3. Battery ageing prognosis (IS2-3) 

The current innovative solution so-called IS2-3 is an original tool developed by the 
CEA through the EVELIXIA project. The IS2-3 developed by CEA provides in real 
time the state-of-health and remaining life of the battery under surveillance. 

2.3.3.1. Objectives 

The Energy Assets Maintenance – Battery ageing prognosis (IS2-3) aims to 
calculate the battery state of health (SOH) and remaining useful life (RUL) in order 
to help the planning of battery maintenance. 

2.3.3.2. Methodology 

The IS2-3 uses battery operation data. Data processing is a key step in the 
development of advanced approaches for systems analysis. In a first step, an 
acquisition of the monitoring data shall be performed automatically. Then, a data 
processing structures the raw data and extracts the key indicators using statistical 
techniques and data-driven algorithms. Six families of indicators can be proposed 
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as indicated in Figure 16. Within the EVELIXIA project, CEA is focusing on health 
indicators: diagnosis of the current SOH of the BESS and prognosis of its future 
SOH and RUL. 
 
 

 
Figure 16.Architecture for BESS diagnosis / prognosis 

The SOH and RUL can be calculated using Calendar and Cycling degradations. 
SOH degradation can be dissociated by cycling and calendar contribution 
(respectively SOHcycandSOHcal). With simplified cumulative linear approach and 
considering similar past/future use, this repartition can be expressedas: 

SOHEOL = SOHBoL − 𝜽𝒄𝒂𝒍̃ .RUL− 𝜽𝒄𝒚𝒄̃.FEC 
with𝜽𝒄𝒂𝒍̃  the average calendar degradation rate expressed as Δ𝑆𝑂𝐻𝑐𝑎𝑙per year, 
𝜽𝒄𝒚𝒄̃the average cycling degradation rate expressed as Δ𝑆𝑂𝐻𝑐𝑦𝑐 per FEC, FEC the 
Full Equivalent Cycles, BoL is Beginning of Life, EoL is End of Life. Figure 17 shows 
the cumulative degradations inducing battery SOH decrease. 
 

 
Figure 17.SOH and RUL calculation vs Calendar and Cycling degradations 

CEA has developed two approaches for the prognosis of battery aging. The first 
one relies only on operation data and does not need a pre-calibrated battery 
aging model. This approach is shown in Figure 18. The second approach needs a 
pre-calibrated battery aging model and is shown in Figure 19. 
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Figure 18.Diagram and example for approach 1: Battery SOH prediction without pre-

calibrated model 

The Inputs for the first approach are Battery nominal Energy (Wh)/capacity (Ah) 
from battery supplier. Current (I), voltage (U), temperature (T), state of charge 
(SOC) given by the BMS and if possible, SOH given by the BMS from data 
acquisition on the BESS. 
 

 
Figure 19. Diagram of 2nd Approach: Battery SOH prediction 

 using pre-calibrated aging model 

The second approach can be applied for EVELIXIA only if we have complete 
datasheet allowing to pre-calibrate an aging model or if model on similar 
technology would be available. In addition to the operation data, detailed 
information about the battery system: cell supplier, cell datasheet and BESS 
architecture (parallel and series) are needed. 

2.3.3.3. Evaluation & Results 

CEA conducted meetings with two pilot sites (PS6: Spanish and PS7: Finnish) in 
order to work on the useful data from the BESS. The datasheet given by PS6 
indicates that the batteries are either VRLA (Valve Regulated Lead Acid Battery) or 
NiCd (Nickel Cadmium battery). The use of IS2-3 on these battery chemistries 
needs a lot of new development that cannot be done during EVELIXIA Project. 
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VRLA and NiCd need for example overcharge and have secondary reactions and 
their aging is very different from Li-ion batteries. IS2-3 is calibrated on Lithium-Ion 
batteries. Thus, finally IS2-3 tool will be used only on PS7, which has Lithium-Ion 
batteries. IS2-3 development task in EVELIXIA project allows continuing the 
development of CEA battery diagnosis and prognosis tools. For example, the 
calculation of full equivalent cycles using operation data have been improved 
recently.  The CEA has not yet data from pilot sites to give results on these BESS. 
 
Figure 20 below shows results on three BESS in a power plant from which the CEA 
got data for 7 years during a previous project (in the context of a call from the 
French Commission for Energy Regulation). This figure shows that the SOH given 
by the BMS is higher than the one given by the A4 - RM algorithm, which is higher 
that the SOH given by the aging model. The BMS does not detect that the battery 
capacity is lower at the beginning of the operation due to calendar aging. The 
difference between the A4-RM algorithm and the aging model results is less than 
3 % for BESS1 and BESS3 and about 4 % for BESS2. 
 

 
Figure 20.SOH evolution versus the number of equivalent cycles using A4 RM 

algorithm, an empiric ageing model and SOH from the BMS 

2.3.3.4. Next Steps 

Regarding IS2-3, CEA will work on the integration of one or two BESS in the tool 
presented in Figure 16. CEA will pre-calibrate aging model if the available data 
allows this. Thus, CEA will simulate the SOH and RUL using both approaches 
described in Figure 18 and Figure 19. Detailed results will be given later when 
CEAreceives enough data from pilot sites. 
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2.4. Demand Forecasting (IS3) 

EVELIXIA's Innovative Solution 3 (IS3) "Demand Forecasting" developed by 
CERTH/CPERI, is a critical component of the "Building Awareness and Forecasting 
Toolbox". IS3 supports evaluating different control scenarios (e.g., efficient 
resource planning, load balancing, energy trading) by utilizing predictive 
algorithms for local energy production and consumption across various vectors 
(electricity, heating, gas) and scales (building, district) through Machine Learning 
(ML) and Deep Learning (DL) techniques. During EVELIXIA, IS3 contributes to the 
development of a multi-dimensional toolbox with modelling functionalities that 
support B2G services. To achieve this, CERTH/CPERI advances the tool's 
capabilities to a) autonomously determine the most promising algorithm for 
several network types (ANN, SVR, LSTM, GBT, ARIMA) and topologies (two-stage, 
ensembled, hybrid) based on a set of attributes and metrics to ensure optimal 
forecasting accuracy under varying conditions (see Section 2.4.2.4), and b) 
integrate a clustering component based on generic-purpose clustering 
algorithms, such as K-means and the Density-based clustering of applications 
with noise (DBSCAN). In support of a broad range of interested stakeholders (i.e., 
building managers, energy planners, consultants, aggregators, grid operators), IS3 
offers a refined understanding of energy consumption and production patterns 
and complements the data-driven forecasting capacity of a) the Building Energy 
Modelling and Simulation (IS5), and b) the Multi-Vector Grids Energy Modelling 
and Simulation (IS15) by enabling multi-dimensional forecasting. 
 

2.4.1. Objectives 

IS3 - Technical Objective "TRL5 to TRL7": Originally validated in the relevant 
environment of several past EU-funded projects (e.g. SMILE GA No. 731249, 
RENAISSANCE GA No. 824342) Demand Forecasting is introduced to EVELIXIA at 
Technology Readiness Level (TRL) 5. Advancing towards TRL6, a working version 
of IS3 is tested in the controlled, operational environment of the Greek Pilot Site 
(GR-PS). Testing is conducted using simulation data generated by IS5 - "Building 
Energy Modelling and Simulation" (see Section 2.6) for the CPERI office building 
(see Section 2.4.3). Upon integration of the EVELIXIA platform within GR-PS and 
establishment of its API connection with IS3, hour-ahead forecasting using sensor 
data sourced from the platform will be performed to complete testing. 
Progressing towards TRL 7 until the end of the project, future efforts and 
refinements of the tool target demonstration of the technology across all 
EVELIXIA pilot sites and end-user validation to expand its real-world applicability. 
 
IS3 - Scientific Objective "Energy consumption and generation forecasting":  
Develop and implement advanced, accurate, data-driven energy demand and 
local production forecasting services across EVELIXIA's Pilot Sites (PS) through the 
autonomous selection of suitable algorithms and the integration of clustering 
techniques. These services assist facility managers and aggregators of large 
building portfolios in energy management, with accurate forecasting and B2G 
service delivery (e.g. demand shifting and voltage regulation). 
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2.4.2. Methodology 

2.4.2.1. Data extraction 

To source the required input data, IS3 connects through the respective APIs of the 
energy modeling tools for building- and grid-level analysis developed by IES, 
namely: 
 

• IS15-intelligent Virtual Network (iVN), a high-level district modelling tool for 
performing simulations of city or community-level commodity distribution 
networks 

• IS5-iSCAN, a powerful data acquisition and monitoring system designed to 
streamline energy management processes, facilitating real-time data 
extraction, storage, and analysis 

 
The automation exchange involves configuring in-house Python-based scripts, 
providing access to historical and real-time energy consumption values, and 
efficient data collection and transformation. The integration significantly 
enhances forecasting efficiency, as it eliminates errors, and the manual effort 
required for data handling and collection and ensures that models are trained 
and tested on the most relevant, up-to-date energy consumption data. This 
streamlined process establishes a continuous pipeline of forecasting updates, 
facilitating real-time adaptations of predictions. 

2.4.2.2. Dataset 

To perform hour-ahead forecasting based on a given dataset, a new column 
("Next Hour") is created by shifting the energy consumption values forward by one 
time step. This column serves as the target variable that the forecasting models 
aim to predict.  Several pre-processing steps are then applied to the initial dataset 
to ensure data quality and enhance model performance. 
 

• A normalization occurs to the time series to scale the data between 0 and 1, 
preventing bias toward larger numerical values.  

• To capture temporal dependencies, lag features incorporate past energy 
values, along with a rolling mean feature to smooth short-term 
fluctuations. 

• Missing values resulting from these transformations are dropped to 
maintain consistency.  

• The dataset is divided into training (90%) and testing (10%) sets, ensuring 
the models are trained on historical data while being evaluated on unseen 
future values.  

•  
These preprocessing steps formulate the Baseline Model and enhance the 
predictive power of the models by incorporating historical trends and reducing 
noise in the dataset. 
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2.4.2.3. Models Benchmarked 

A set of predictive models are integrated into the analytical framework of IS3 to 
ensure precise forecasting. All selected models are executed as part of the 
analysis, ensuring a robust and concurrent evaluation of building energy 
dynamics. This approach is essential for capturing the heterogeneous nature of 
building energy data, optimizing computational efficiency, and tailoring the 
framework to the specific requirements of the EVELIXIA project, particularly 
regarding non-dispatchable plants. The rationale for employing such a diverse set 
of models for EVELIXIA is twofold. Firstly, it provides a comprehensive benchmark 
of predictive performance across different algorithmic paradigms, thereby 
ensuring reliability in forecasting outcomes Secondly, it brings adaptability and 
versatility when accommodating to various operational scenarios and data 
characteristics encountered in diverse real-world applications.  This strategy is 
integral to achieving the EVELIXIA goal of enhancing building awareness and 
supporting advanced grid services across PSs. The selected predictive models are: 

• Baseline (Persistence) Model: Assumes the current hour's value is the same 
as the next day's value. 

• LSTM (Long Short-Term Memory): A Recurrent Neural Network (RNN) 
designed to handle sequential data and long-term dependencies, capable 
of capturing complex temporal patterns.  

• Gradient Boosting (GBM): An ensemble technique that builds models 
sequentially, optimizing errors at each step. Highly flexible, it delivers strong 
predictive performance but can be prone to overfitting if not properly 
tuned. 

• Random Forest: An ensemble method that combines multiple decision 
trees to improve accuracy and reduce overfitting. It is robust to noise and 
works well for both classification and regression tasks.  

• XGBoost (Extreme Gradient Boosting): An ensemble learning method 
based on gradient boosting, designed for speed and performance. It is 
widely used for structured data problems and excels in handling missing 
values and complex patterns.  

• LightGBM (Light Gradient Boosting Machine): A gradient boosting 
framework optimized for efficiency and scalability. It uses a leaf-wise tree 
growth strategy, making it faster and more memory-efficient than 
traditional boosting models.  

• CatBoost (Categorical Boosting): A gradient boosting algorithm that is 
highly optimized for categorical data. It automatically handles categorical 
variables without extensive preprocessing, reducing the risk of overfitting. 
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Figure 21. Synopsis of the IS3 workflow 

2.4.2.4. Evaluation Metrics 

To assess the predictive performance of the selected models within the IS3 
framework for EVELIXIA, widely used evaluation metrics that capture different 
aspects of forecasting accuracy and reliability are employed. These metrics 
quantify errors in both absolute and relative terms, highlight the significance of 
large deviations, facilitate standardized comparisons across varying forecasting 
tasks, and validate reliable and efficient delivery of B2G services. Model evaluation 
is based on the following performance metrics: 
 
Mean Absolute Error (MAE): Measures average absolute error. 
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Root Mean Squared Error (RMSE): Penalizes large errors. 
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Mean Absolute Percentage Error (MAPE): Provides a relative error percentage. 
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2.4.3. Evaluation & Results 

For the purposes of this initial test run, the evaluation regards evaluation 
algorithm selection for forecasting methods at the building level following a 
manual approach and allowing for the incorporation of domain expertise and 
specific performance criteria. Future work will focus on developing the planned 
automated selection mechanisms to dynamically optimize model choices based 
on evolving data characteristics and operational needs. The retrieved dataset 
comprises of hourly values of the energy consumption profile generated by IS5-
iSCAN (Figure 22) for the CERTH office building of the GR-PS labeled as "Total 
system energy."  
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The resulting key performance metrics for each model are summarized in Table1. 
Random Forest and Gradient Boosting demonstrate the highest predictive 
accuracy, achieving the exceptionally low MAPE values of 0.03% and 0.05%, 
respectively. These results underscore that tree-based ensemble methods are 
highly effective for short-term energy forecasting, as they adeptly capture 
complex interactions among lagged energy consumption values without the 
need for extensive data preprocessing. Such precision is critical for EVELIXIA’s aim 
of supporting demand shifting and voltage regulation. Conversely, LSTM, despite 
its robust capability to model sequential dependencies, exhibits a high error rate 
(MAPE = 0.90%). This disparity is mainly attributed to the limited size of the 
dataset, suboptimal hyperparameter tuning, or insufficient training iterations. 
Another key observation is that LightGBM and CatBoostperform well overall with 
MAPE values of 0.14% and 0.34%, respectively. However, these models exhibit 
some smoothing effects, a characteristic that indicates lower responsiveness to 
abrupt fluctuations in energy demand, in consistency with gradient boosting 
algorithms that prioritize overall prediction accuracy. 

 
Figure 22. Total system energy examined dataset 

Table 1. Resulting performance metrics 

Model MAE RMSE MAPE (%) 
Baseline 0.0692 0.1406 30.5 
LSTM 0.00197 0.00315 0.90 
XGBoost 0.00035 0.00086 0.12 
LightGBM 0.00046 0.00222 0.14 
CatBoost 0.00082 0.00138 0.34 
Random Forest 0.00008 0.00048 0.03 
Gradient Boosting 0.00019 0.00053 0.05 

 
Figure 23 presents the resulting MAE for all models. While the Random 
Forest model outperforms the others, it is important to point out that all 
models produced forecasts with acceptable accuracy (MAPE < 1.0%) in the context 
of energy management. These forecasts can facilitate other services, such as 
demand response optimization, voltage regulation, and predictive 
maintenance. By ensuring reliable short-term predictions, the models 
contribute to the efficient operation of distributed energy resources (DERs) 
and enhance the overall stability of the power system. 



 

EVELIXIA – D4.1 Autonomous Building Digital Twins                                                   35 
 

 

 
Figure 23. The Mean Absolute Percentage Error across models. 

The evaluation of the predictive models highlights key differences in their 
forecasting performance, capturing trade-offs between accuracy, computational 
efficiency, and adaptability to different patterns in the data. Key observations 
across the predictive models reveal distinct strengths and limitations.  
The Baseline Model(see2.4.2.2) serves as a simplistic benchmark, but performs 
poorly, exhibiting the highest RMSE. 
LSTM effectively captures long-term dependencies but shows slight fluctuations 
due to sensitivity to noise. Occasionally lagging behind actual values, it is likely 
hindered due to training data limitations or suboptimal hyperparameter tuning.  
XGBoost provides stable and precise predictions with minimal deviations but 
struggles with sudden trend shifts, a common limitation of tree-based models in 
sequential forecasting.  
LightGBM delivers competitive accuracy with fast computation, adept at 
capturing short-term variations, but occasionally smoothing out rapid fluctuations 
due to its leaf-wise growth approach. 
CatBoost performs well on structured data, balancing accuracy and efficiency, 
though it sometimes struggled to adapt to sharp peaks and troughs, likely due to 
its reliance on categorical transformations. Random Forest produces stable but 
overly smooth predictions, missing finer details due to the averaging effect of 
multiple decision trees, which reduces variance at the cost of responsiveness to 
abrupt changes.  
Gradient Boosting effectively captures the overall trends but shows slight 
overfitting in some cases, making it less adaptable to dynamic shifts in the data.  
Overall, the analysis underscores that no single model is universally superior; 
instead, the choice of model depends on the specific forecasting requirements, 
such as sensitivity to sudden changes, long-term trend detection, or 
computational constraints. By leveraging the strengths of each approach, energy 
management strategies can be optimized for improved forecasting accuracy and 
grid service efficiency.  
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Figure 24 resents the resulting forecasts of each model for an indicative day.  

 
Figure 24. Resulting forecasts of each model compared to the actual time series for 

one day. 

The resulting metrics indicate that a) ensemble-based tree models outperform 
traditional statistical approaches while requiring less computational cost 
compared to deep learning models like LSTM, and b) ML & DL models generally 
outperform classical statistical methods for day-ahead energy forecasting. Among 
the tested models in this initial test-run: 
Random Forest and Gradient Boosting emerges as the best-performing 
models, achieving the lowest performance metrics. 
The Tree-based models (i.e., XGBoost, LightGBM, CatBoost, and Random 
Forest) achieve significant accuracy, demonstrating strong predictive power and 
stability. 
Random Forest exhibits the lowest performance metrics due to its ability to 
reduce overfitting through ensemble learning for the given dataset. 
LSTM performs reasonably well, but had a slightly higher error rate, indicating 
that deep learning models require fine-tuning and a larger dataset to fully 
capture complex temporal dependencies. 
Gradient Boosting and CatBoost return promising and competitive results, but 
they struggle with sudden changes in energy demand, highlighting the 
limitations of boosting models in highly volatile time series.  
 
The results highlight the effectiveness of ML and DL models for short-term energy 
forecasting, demonstrating a significant advantage over traditional statistical 
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methods. Among the evaluated models, a) Random Forest and Gradient Boosting 
exhibit the highest performance, achieving optimal accuracy with minimal error 
rates for the given dataset, and b) LSTM model shows potential in capturing 
sequential dependencies despite its limited performance, likely due to dataset 
size and training constraints. However, since model performance is inherently 
dependent on the characteristics of the dataset (such as feature distributions, 
sample size, and data quality), results may vary with changes in the dataset, 
potentially affecting predictive accuracy and generalizability as IS3 benchmark 
models take into account these particularities across scenarios. 

2.4.4. Next Steps 

In the forthcoming phase of the EVELIXIA project until M24, the main 
advancements and activities related to IS3 that are underway, pertain to: 

• further streamlining data acquisition and preprocessing through IS5-iSCAN 
and IS15-iVN in parallel with the modelling progress, ensuring a robust and 
automated forecasting pipeline across EVELIXIA's PSs.   

• exploring hybrid models that combine the sequential learning capabilities 
of LSTM with the structured feature selection strengths of tree-based 
models to develop an automatic model selection process that identify well-
performing models based on the specific forecasting task and data 
availability, providing insights on accurate and reliable forecasting services 

• employing hyperparameter optimization and feature selection techniques 
to further enhance predictive accuracy and adaptability across different 
energy system scenarios. 
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2.5. Flex Forecasting (IS4) 

The Flex Forecasting (IS4) service focuses on proactively assessing and forecasting 
the levels of demand-side flexibility that could potentially be provided by 
distributed loads in buildings. In this way, IS4 will contribute to optimizing energy 
consumption and grid stability in buildings, particularly with the increasing 
integration of Renewable Energy Sources (RES).  This can be achieved through 
the management of individual building systems (such as white goods, HVAC 
systems, etc.).By accurately predicting the availability and magnitude of this 
demand-side flexibility, building and grid managers can make informed decisions 
on energy allocation and load balancing, thus reducing energy cost and grid 
congestion and participating in Demand Response (DR) programs. This proactive 
approach allows for a more efficient and flexible energy system in buildings, 
maximizing the use of Renewable Energy Sources (RES) and minimizing 
dependence on peak generation resources.  The foundation of the tool is in 
advanced algorithms and models considering historical building energy patterns, 
various factors that influence building energy consumption, including weather 
forecasts, occupancy patterns, building thermal characteristics and appliance 
operation. 

2.5.1. Objectives 

The primary objective of IS4 is to evaluate and forecast the demand-side flexibility 
limits at the building level, focusing on both thermal and electrical demand. This 
involves the development of advanced Machine Learning algorithms and models 
capable of quantifying the demand flexibility potential arising from the various 
building systems (HVAC systems, lighting, etc.). More specifically, IS4 predicts the 
amount of flexibility that a building has to either increase its energy consumption 
during periods of surplus energy production (up-flexibility bound) or reduce its 
energy consumption during time periods of energy production shortage or high 
demand (down-flexibility bound). By providing accurate predictions of building 
energy consumption patterns and demand-side flexibility limits, IS4 will 
contribute to optimizing energy management strategies, reducing peak demand, 
increasing the economic benefits for residents and integrating RES into the grid. 
In addition, IS4 also promotes a detailed scientific framework for analyzing and 
utilizing demand-side flexibility within the buildings by establishing reliable 
methodologies and performance metrics that quantitatively assess the demand 
flexibility limits. This approach integrates data analytics methods, Machine 
Learning techniques in order to estimate and predict the demand side flexibility 
in buildings and optimize the load response, thus contributing to grid stability. IS4 
promotes the transition to sustainable energy practices by providing smart 
energy systems within the buildings and supporting the active participation of 
buildings in the flexibility markets. 

2.5.2. Methodology 

For the technical development of IS4, the necessary data were collected through 
the building simulation model provided by IS5 (see Section 2.6). In this way, it was 
ensured that the solutions proposed by IS4 will be fully aligned with the needs 
and requirements of the EVELIXIA project. More specifically, historical energy and 
weather data for one year were used regarding the Greek Pilot site, which 
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includes the offices of CERTH and Mpodosakeio Hospital. Furthermore, the results 
obtained from IS4 could be directly applicable to the Greek Pilot site, supporting 
the integration of the various ISs in WP4 (EVELIXIA’s Intelligent B2G and G2B 
Services).The analysis of historical energy consumption patterns is critical and 
necessary for the technical development of IS4, as they contribute to the 
understanding of the energy behavior and the overall energy and operational 
efficiency of a building. Figure 25 and Figure 26 represent the boxplots of one 
year’s energy consumption for the Greek Pilot site which were extracted from IS5. 
In particular, each boxplot shows the distribution of energy consumption by hour 
within the year, allowing visual comparison of energy patterns and understanding 
hourly variations in energy consumption allowing for periods of high or low 
consumption, which are critical for planning energy strategies. 
 

 
Figure 25. Boxplot of total building energy consumption for a year - CERTH 

Offices (Greek Pilot site) 
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Figure 26. Boxplot of total building energy consumption for a year - 

Mpodosakeio Hospital (Greek Pilot site) 

For the technical development of IS4, a detailed approach was used utilizing k-
Means algorithms to study and classify historical energy consumption patterns 
and determine the demand-side flexibility limits for the Greek Pilot site. By 
creating groups of consecutive two-day periods within the year and using static 
analysis metrics (mean value and standard deviation) for the annual energy 
consumption data, considering the outdoor temperature, k-Means was used to 
classify similar energy behaviors. The choice of two consecutive days allows for the 
recording and analysis of short-term changes in energy consumption, which may 
be influenced by external factors such as external temperature and the behavior 
of occupants and contributes to provide overview of daily energy patterns and 
improve the accuracy of energy demand forecasts.  
More specifically, this methodology involves two clustering stages: 

• The first step of k-Means clustering for the outdoor temperature, 
• In the second step, k-Means clustering is applied to the building energy 

consumption data within each cluster obtained from the first stage, 
ensuring that energy consumption patterns are analyzed in relation to their 
corresponding outdoor temperature groupings/clusters. 

 
In the first clustering step, the k-Means methodology was applied to the 
outdoor temperature data. In this way, days with similar temperature 
conditions were grouped together, thus creating clusters representing 
different temperature profiles. This analysis is critical as outdoor temperature 
has a significant impact on energy consumption. Figure 27 and Figure 28 
present that the best classification of the data based only on outdoor 
temperature of all two consecutive days of the year is in 2 clusters for the 
Greek Pilot site since it has the highest silhouette score. 
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Figure 27. Silhouette scores of outdoor temperature clustering - CERTH 

Offices (Greek Pilot site) 

 
Figure 28. Silhouette scores of outdoor temperature clustering – Mpodosakeio 

Hospital (Greek Pilot site) 
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In the second stage, within each of the above 2 clusters resulting from the 
outdoor temperature analysis, k-Means was applied to the corresponding energy 
consumption data contained in them. In this way, energy consumption patterns 
that are similar under specific outdoor temperature conditions were identified. 
Figure 29 shows that the first outdoor temperature cluster contains 4 energy 
consumption sub-clusters, while Figure 30 indicates that the second cluster 
includes 2 sub-clusters regarding the CERTH offices (Greek Pilot site).  
 

 
Figure 29. Silhouette scores of building energy consumption clustering in the 

first outdoor temperature cluster - CERTH Offices 

 
Figure 30. Silhouette scores of building energy consumption clustering in the 

first outdoor temperature cluster - CERTH Offices 
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Therefore, applying the same analysis to the two resulting groups of external 
temperature for Mpodosakeio Hospital (Greek Pilot Site), Figure 31 shows that 
there are 7 energy consumption sub-clusters based on the highest silhouette 
score, while Figure 32 shows that there are involved 6 sub-clusters. 

 
Figure 31. Silhouette scores of building energy consumption clustering in the 

first outdoor temperature cluster –Mpodosakeio Hospital 

 
Figure 32. Silhouette scores of building energy consumption clustering in the 

outdoor temperature cluster – Mpodosakeio Hospital 
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Following the k-Means clustering process, IS4 is able to predict the demand side 
flexibility bounds. The predicted energy consumption, weather conditions and the 
corresponding data of the previous day are given as input to IS4. The service then 
classifies the forecast into the appropriate cluster. Using the historical energy data 
from buildings with the most similar and non-similar behavior within that cluster 
being classified, the required flexibility limits are determined. The predicted 
demand-side flexibility bounds will be discussed in more detail in the next section 
(Section 2.5.3). 

2.5.3. Evaluation & Results 

For the technical development of IS4, as mentioned before, historical energy 
consumption data as well as outdoor temperature data for one year were 
collected through IS5 for the Greek pilot area, allowing a detailed analysis of the 
energy behaviour and performance of the buildings in EVELIXIA. Figure 33 shows 
the outdoor temperature data during the simulation period during which they 
were collected, as well as the cluster from the k-Means process with different 
colours in different colours (red and blue) for the CERTH Offices (Greek Pilot site). 
 

 
Figure 33. Outdoor temperature data for the CERTH Offices according to the 

clustering procedure (first cluster-blue and second cluster-red) 
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Also, Figure 34 and Figure 35present the energy consumption data for the 
CERTH offices where the different classification for each of the two above 
mentioned clusters of the outdoor temperature is shown in different colours. 
 
 

 
Figure 34. Energy consumption data for CERTH Offices according to the first 

outdoor temperature cluster 

 
Figure 35. Energy consumption data for CERTH Offices according to the 

second outdoor temperature cluster 
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Regarding the Mpodosakeio Hospital (Greek Pilot site), Figure 36 presents the 
outdoor temperature data during the simulation period in which they were 
collected, as well as the cluster from the k-Means process with different colours 
(red and blue). In addition, Figure 37 and Figure 38 indicate the energy 
consumption data for the Mpodosakeio Hospital where the different classification 
for each of the two above-mentioned clusters of the outdoor temperature is 
shown in different colours.  

 
Figure 36. Outdoor temperature data for the Mpodosakeio Hospital according 

to the clustering procedure (first cluster-blue and second cluster-red) 

 

 
Figure 37. Energy consumption data for Mpodosakeio Hospital according to 

the first outdoor temperature cluster 
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Figure 38. Energy consumption data for Mpodosakeio Hospital according to 

the first outdoor temperature cluster 

Predictions of energy consumption and corresponding outdoor temperature 
based on the IS5 model simulation data were usedto present the predicted 
demand-side flexibility limits. More specifically, the procedure followed involves 
using data from the IS5 dataset, considering them as forecasts in order to be used 
in the analysis and calculation of demand side flexibility bounds. This approach 
allows the accurate analysis and management of energy demand, considering 
changes in weather conditions and energy consumption patterns for the future 
days. The forecasted energy consumption, weather conditions and the 
corresponding data from the previous day are given as input to IS4. This tool 
classifies the forecast into the appropriate cluster using the above k-Means 
clustering methodologies. Then using the historical simulated energy data from 
the Greek Pilot site that exhibit the most similar and non-similar energy 
behaviour within the cluster being classified, the required flexibility limits are 
determined by calculating the mean value of the above energy consumption 
data. Figure 39 presents the indicativeforecasted demand-for the first energy 
consumption sub-clusters for CERTH offices Figure 40 respectively for the first 
energy consumption sub-cluster of Mpodosakeio Hospital.  

• Blue color represents the building's flexibility to increase energy 
consumption (up-flexibility bound). 

• Red color indicates the predicted limit for reducing energy consumption 
(down-flexibility bound). 

• Green color shows the forecasted energy consumption(baseline). 
The following results represent a one-day forecast with hourly granularity and at 
the points where the three waveforms overlap, there is no available flexibility.  
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IS4 Annex provides all the indicative predicted demand side flexibility bounds for 
each of the aforementioned building energy consumption sub-clusters for both 
CERTH Offices and Mpodosakeio Hospital (Greek Pilot site). 
 

 
Figure 39. Predicted Demand side flexibility bounds for the first energy 

consumption sub-cluster of CERTH Offices (up- flexibility bound (blue), down-
flexibility bound (red), baseline (green)) 

 
Figure 40. Predicted Demand side flexibility bounds for the first energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 



 

EVELIXIA – D4.1 Autonomous Building Digital Twins                                                   49 
 

2.5.4. Next Steps 

Regarding the next steps of the IS4 technical development, it is intended to 
further improve the effectiveness of IS4 by incorporating additional metrics 
during the process of classifying the building's energy behavior (such as 
photovoltaic (PV) generation, intra-day energy cost values, integration of EV 
chargers, etc.). These steps are expected to improve the accuracy and reliability of 
IS4’s predicted demand-side flexibility limits, contributing to optimizing the 
building energy consumption and supporting the grid stability. In addition, the 
forecasts provided by the demand forecasting tool (IS3) will be used as baseline in 
order to estimate and predict the limits of demand-side flexibility. At the same 
time, it is planned to integrate IS4 into the whole WP4 through T4.6 by month 
M24 of the project, contributing to the integration of the different ISs into 
EVELIXIA (D5.1). In conclusion,IS4 will be also deployed in other EVELIXIA’s Pilot 
Sites either through the IS5 simulation model or by receiving either historical or 
real-time data through T4.6. 

2.6. Building Energy Modelling and Simulation (IS5) 

The Building Energy Modelling and Simulation tool (IS5) is built upon the IES 
Virtual Environment (VE) tool, a comprehensive simulation software widely used 
for energy performance analysis, building design optimization, and sustainability 
assessments. VE enables detailed modelling of buildings by integrating physics-
based simulations with real-world operational data, facilitating informed decision-
making across the entire building lifecycle. The software’s core simulation engine, 
Apache, performs advanced thermal and energy analyses, allowing users to 
evaluate various designs and operational scenarios with high accuracy. 
IS5 extends traditional digital twin (DT) functionalities by combining physics-
based and data-driven modelling approaches. A key innovation within EVELIXIA 
is the development of VE-based hybrid DT which leverage real-time data from 
IoT devices, smart meters, and external sources (e.g., weather platforms). This 
enables the creation of calibrated and refined digital twins that more accurately 
reflect the actual operational behaviour of buildings. Additionally, IS5 will 
introduce load disaggregation and the deployment of virtual sensors to 
enhance building performance insights across interconnected networks, 
supporting sector coupling services. 
To ensure seamless integration within the broader EVELIXIA ecosystem, IS5 is 
being configured for machine-to-machine (M2M) communication and semantic 
interoperability through APIs to the project's central server. This will enable 
automated data exchange with other ISs and tools, allowing IS5 to function not 
only as a standalone energy modelling tool but also as an integrated component 
of the EVELIXIA Building-to-Grid services layer, supporting a more efficient and 
interoperable energy management ecosystem. 
As of M17, during the preparation of this deliverable, the methodology is being 
defined and tested within the Greek pilot. The results and refinements from this 
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phase will inform the replication across the remaining six pilot sites by M24, 
with final outcomes to be reported in D4.2. 

2.6.1. Objectives 

The primary technical and scientific objectives of IS5 within the EVELIXIA context 
include: 

• Enhance Building-to-Grid Services: Develop and deploy a simulation 
engine that will facilitate the integration of buildings with grid services, 
specifically focusing on energy flexibility and demand response capabilities. 

• Hybrid DT: Create digital twins that combine both physics-based models 
and data-driven models for more accurate simulations of building 
performance, enabling precise demand response management. 

• Interoperability with Other ISs: Ensuring seamless data exchange across 
different systems, including integration with other ISs within T4.1(IS1(Indoor 
Air Quality Service),IS2 (Microgrid Maintenance Service),IS4 
(thermal/electricity flexibility forecasting) and IS3 (local energy 
consumption/generation forecasting)), and support for the decision-
making and forecasting services developed within T4.2. The outputs from 
IS5 will feed into the Building Awareness Toolbox (T4.1) and the 
Autonomous Building Decision Support Toolbox (T4.2), enabling more 
informed and proactive forecasting, demand planning, and energy 
performance management. 

2.6.2. Methodology 

The development of IS5 involves the integration of several methodologies, 
focusing on simulation,DT modeling, and data interoperability. The general 
methodology is divided into the following phases: 
 
1. Data Collection, Baseline DT Model Preparation and Calibration 
To accurately model the seven pilots in the EVELIXIA project, a structured data 
collection process was established. An Excel file was prepared and circulated 
among the pilot leaders, requesting all necessary information to build the 
baseline models for each pilot building. This included: 

• General Building Characteristics: Location, year of construction, building 
type, and occupancy patterns. 

• Architectural & Geometric Data: Floor plans, elevations, and construction 
details. 

• HVAC & Energy Systems: Heating, cooling, ventilation, lighting, and energy 
storage. 

• Metering & Sensor Data: Available IoT devices, smart meters, and energy 
monitoring systems. 

• Weather & Environmental Data: Local climate conditions from on-site and 
off-site sources. 

• Operational Data: Historical energy consumption, load profiles, and 
maintenance schedules. 

In case of lack of data availability, assumptions are made to fill in missing 
information based on standard building codes (e.g. ASHRAE), benchmark data, 
and expert judgment. 
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Once the data are collected, each pilot's DT is developed using IES Virtual 
Environment (VE). This process includes: 

• 3D Geometry Construction: Using the provided architectural drawings to 
create an accurate representation of the buildings. 

• Zoning & Thermal Segmentation: Dividing the buildings into thermal 
zones based on occupancy and usage patterns. 

• Envelope Properties Assignment: Inputting wall, roof, window, and 
insulation properties to reflect real-world performance. 

 
Finally, in this initial phase the model is calibrated using historical real data to 
ensure the accuracy of the simulations. So, simulation outputs (e.g., energy 
consumption, indoor temperatures) are compared with available real energy use 
data from the pilots. 
 
2. Simulation, Integration and Interoperability 
Once the baseline models are developed and preliminarily calibrated, extensive 
simulation processes are conducted to evaluate energy performance, demand 
flexibility, and comfort levels. This phase includes: 

• Baseline Performance Simulations: Running simulations under typical 
operating conditions to assess baseline energy consumption, indoor 
comfort metrics, and potential flexibility capacities. 

• Scenario Analysis: Evaluating different operational strategies, demand 
response scenarios, and grid interaction capabilities. These simulations help 
identify how buildings can adjust consumption patterns to support grid 
services while maintaining occupant comfort. 

• Integration with iSCAN Platform: Simulation results are exported to iSCAN 
for data visualization, collaborative analysis with partners, and further 
validation. This step enables stakeholders to assess building performance 
through an interactive platform that supports exploratory data analysis. 

• API Development for Interoperability: APIs are developed to facilitate 
data exchange between IS5, iSCAN, and the EVELIXIA project server. This 
enables automated data sharing with T4.1 and T4.2 components like IS1 
(Indoor Air Quality Service), IS2 (Microgrid Maintenance Service), IS3 (local 
energy forecasting) and IS4 (flexibility assessment). 

2.6.3. Evaluation & Results 

The first development phase (M4-M16) of IS5 focused on defining the 
methodology and workflow for the development, planning and validation of the 
VE’s capabilities expenditure in terms of B2G services enhancement, hybrid DT 
creation, and interoperability with the other ISs within EVELIXIA. 
In particular, it has been decided to focus firstly only on the creation of the 
baseline building DT model of one pilot, the Greek Demo Site, assessing its 
accuracy in simulating building energy performance, and exporting its outputs 
into iSCAN platform for visualization, analysis and data exchange through API to 
the EVELIXIA platform and other ISs. This process was crucial in understanding 
the building’s energy flexibility potential and ensuring seamless interaction with 
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other EVELIXIA services. Once validated, the process will be replicated to the other 
6 Pilot Sites. 
 
1. Overview of the Greek Pilot DT Model 
The Greek pilot serves as the first implementation of IS5, providing a reference 
framework for future replications in other pilots. The pilot is composed of 2 
buildings: Mpodosakeio Hospital and the CERTH/CPERI Office building, making it 
an ideal testbed for evaluating energy demand patterns and flexibility potential. 
The baseline DT model was created in IES VE, integrating the following 
information from D1.3 and provided by the pilot leaders: 

• Architectural and thermal properties from CAD sources. 
• HVAC system representation, including heating, cooling, and ventilation 

configurations. 
• Lighting and occupancy schedules to reflect real usage patterns. 
• Renewable energy sources (e.g., PV panels, battery storage). 
• Weather conditions and external influences using historical climate data. 

 

 
Figure 41. CERTH building google 

maps view 

 
Figure 42. Mpodosakeio Hospital 

building in VE 

 

 
Figure 43. CERTH/CPERI building in 

VE 

To ensure accuracy, the simulation models were calibrated against real data 
obtained from the pilot site leader. The calibration process involved comparing 
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simulated vs. actual energy consumption for heating, cooling, and electricity, and 
adjusting occupancy schedules and internal heat gains to match real usage 
trends. 

• The CERTH/CPERI Office building was validated against an annual total 
electricity consumption of 275.02 MWh for the year 2022. The VE simulation 
returned a yearly total electricity consumption of 247.22MWh, with a 
difference of less than 10%compared to the metered consumption. 

• Mpodosakeio Hospital was validated both yearly and monthly for its 
electricity consumption, and only yearly from the thermal energy aspects 
as no monthly metered energy data of the District Heating Network were 
available. The results showed a minor deviation between simulated and 
actual metered values of 6.8% in yearly thermal energy, 5.7% in yearly 
electricity consumption, and an overall 6.3% deviation in total energy. 

 
2. iSCAN for Data Visualization and Data Exchange through API 
To further analyse results, the simulated data were exported to the iSCAN 
platform (Figure 44), enabling partners to interactively explore building 
performance metrics, and to enable real-time communication between the 
digital twin and the EVELIXIA project’s central server API were developed. This 
enables automated data sharing with the other ISs, and real-time updates to 
support decision-making in T4.2’s Autonomous Building Decision Support 
Toolbox. 
 

 
Figure 44. Baseline Digital Twin model results visualized in iSCAN platform 
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2.6.4. Next Steps 

Building on the progress achieved so far, the upcoming months will focus on 
further refining IS5 and ensuring its seamless integration with other EVELIXIA 
services. The key next steps include: 

• Scaling and Replicating the Methodology: Expanding the baseline digital 
twin approach to additional pilot sites beyond Greece. 

• Enhancing Model Calibration: Integrating real-time sensor data into the 
digital twin to improve the model’s accuracy. 

• Strengthening Interoperability & Advancing Data Exchange: Expanding 
the API infrastructure to establish direct, standardized communication 
between IS5, iSCAN, and the central EVELIXIA project server. 
Implementing secure, scalable data-sharing mechanisms to support 
real-time analytics and control strategies. 
• Ensuring interoperability with IS1 & IS2 for building awareness (T4.1), 

IS3 & IS4 for local energy forecasting and flexibility assessment (T4.1), 
and IS9 & IS10 for demand planning and energy performance 
optimization (T4.2). 

• Facilitating the integration of all services into the EVELIXIA platform, 
allowing real-time data flows, cross-service interactions, and 
automated decision-making. 

 
These advancements will significantly enhance the automation, 
interoperability, and overall effectiveness of IS5, ensuring it fully supports 
EVELIXIA’s mission of integrating buildings with grid services. 
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3. EVELIXIA’S AUTONOMOUS BUILDING DECISION 
SUPPORT TOOLBOX 

3.1. Introduction 

This chapter describes the tools described in Task 4.2, including the Building 
Investment planning assistant service (IS6), the SRI Advisor (IS7), the Proactive 
Demand Planning Service (IS9) and the Continuous Energy Performance 
Manager Service (IS10). The latter service is unfolded into 3 sub-services, i.e., IS10a, 
IS10.b, IS10.c which include distinct optimization methods that will be applied in 
different pilots. 

3.2. Building Investment Planning Assistant (IS6) 

EVELIXIA's Innovative Solution 6 (IS6) "Building Investment Planning Assistant" is 
a critical component of the "Autonomous Building Decision Support Toolbox" that 
leverages the robust framework and advanced analytic capabilities of VERIFY, a 
web-based platform developed by CERTH/CPERI. VERIFY consists of two software 
suites, VERIFY-Buildings (VERIFY-B) for building-level, and VERIFY-District 
(VERIFY-D) for district-level analysis respectively. Building upon VERIFY-B, IS6 
holistically performs dynamic Life Cycle Assessment (LCA) and a Life Cycle Costing 
(LCC) of energy systems at the building level from manufacturing to operation 
taking into account a) location-specific climate conditions, b) thermal properties 
of the building envelope, and c) the users’ energy profile. IS6's modular 
architecture (Figure 45) integrates diverse data streams on energy prosumption, 
environmental impact and financial information for all types of energy carriers 
(e.g. electricity, heating, cooling), coupling VERIFY's Life Cycle Inventory (LCI) with 
both static and dynamic external parameters (e.g. operational time series, 
regional emission factors, fuel prices, interest rates, and others). Both suites 
employ an internal energy modelling module (INTEMA) that can generate 
synthetic energy profiles with hourly granularity (8,760 values per year) through 
an automated process. Both suites are able to calculate pre-defined Key 
Performance Indicators (KPIs) such as Lifetime Primary energy Demand, Lifetime 
Global Warming Potential and Lifecycle Costs for a user-defined analysis period 
that is generally recommended to be equal or greater than the expected lifespan 
of the installed systems. During EVELIXIA, CERTH/CPERI will adapt its energy 
performance, environmental impact, and financial returns analytics capabilities to 
contribute to the development of a digital building twin with modelling 
functionalities that support investment planning and evaluate the provision of 
flexibility services. VERIFY's capabilities will be extended to a) utilize and fuse data 
from multiple data resources (i.e., its own Postgres relational database, European 
grid emissions factors observatories, its own data lake and lifecycle inventory, the 
EVELIXIA platform and the data sourced by its constituent components), and b) 
dynamically evaluate key financial variables (such as NPV, IRR, ROI, etc.) relevant 
to the specific context of EVELIXIA's Pilot Sites (PS). In support of a broad range of 
stakeholders (i.e., building managers, energy planners, consultants, aggregators, 
regulatory bodies), IS6 informs decision-making by assessing building-level 
energy system investments in terms of financial benefit, taking into account not 
only the expected costs and savings associated with the installation of new 
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technologies, but also any direct profits from supplying the grid with renewable 
energy. This allows a comprehensive evaluation of these investments' economic 
viability. 

 
Figure 45. IS6/VERIFY Architecture 

3.2.1. Objectives 

IS6 - Technical Objective "TRL5 to TRL7": Originally validated in the relevant 
environment of several past EU-funded projects (e.g., RENplusHOMES GA 
No.101103450, REHOUSE GA No.101079951, IANOS GA No.957810, REEFLEX GA 
No.101096192, ENFLATE GA No. 101075783) VERIFY is introduced to EVELIXIA as a 
tested tool at Technology Readiness Level (TRL) 5. Following the implementation 
of the aforementioned project-specific advancements, a working version of IS6 is 
tested using data obtained from the operational environment of the Greek pilot 
site (GR-PS), advancing towards TRL6. Testing is conducted using static data 
(provided by the GR-PS Manager) and simulated dynamic data (exported from 
IS5-iSCAN) for the CPERI office building. Upon integration of the EVELIXIA 
platform within GR-PS and establishment of the EVELIXIA platform's API 
connection with IS6 testing will be completed using dynamic data related to 
operational energy consumption/generation sourced from the platform, enabling 
real-world, scenario-based analysis of investment strategies. Progressing towards 
TRL 7 until the end of the project, future efforts and refinements target end-user 
validation to expand its real-world applicability, offering a responsive, advanced 
energy-investment planning tool that is accessible to diverse ecosystem actors.  
 
IS6 - Scientific Objective "Computation of real-time life cycle metrics": IS6 is 
advanced to dynamically compute environmental and economic KPIs across 
EVELIXIA's Pilot Sites (PSs), which are designed and equipped with the necessary 
energy generation, management and control systems to provide grid services. 
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VERIFY-B source code will be refined to update the calculation methods of its 
default KPIs and modified appropriately to integrate additional equations for non-
default, EVELIXIA-specific KPIs, namely Net Present Value (NPV), Internal Rate of 
Return (IRR) and Return on Investment (ROI). The cumulative list of quantitative 
metrics derived from IS6 (see Section 3.2.2.5) applies across PSs. Provided they 
correspond to a common analysis period, the VERIFY’s results can be aggregated 
either at the PS-level or at project-level to be used in the evaluation, impact 
assessment, and validation processes, confirming the attainment of EVELIXIA’s 
targets and long-term impact based on the upgrade scenarios that will be 
implemented per PS.  

3.2.2. Methodology 

IS6 operates through an online platform, eliminating the need for local software 
installations, making it accessible from any location with internet connectivity and 
stimulating ease of deployment and navigation. At the time of writing of the 
present deliverable, two approaches for the integration of IS6 with the overall 
EVELIXIA platform are considered: 
 
• Computational integration: This approach involves the integration of 

VERIFY’s computational back-end with the EVELIXIA platform, where 
visualization is provided by IS17 (the Visual Analytics Engine, VAE). In this 
case, the EVELIXIA platform will use VERIFY’s API to make analysis requests 
for specific scenarios. VERIFY will respond with a corresponding JSON file 
with the outcomes of the analysis, which will then be presented to the VAE 
users. Integration will be achieved through an encrypted interface used by 
the platform to communicate with CERTH’s computational back-end 
servers. 

 
• Full web application integration: In this approach, VERIFY’s web application 

will be adapted to the EVELIXIA users’ needs, containerized and integrated 
as a separate module of the EVELIXIA platform’s visual interface. To protect 
CERTH’s IP, the computational back-end used will remain on CERTH’s 
computational cluster, with encrypted communications taking place 
between the two applications.  

 
In both cases, the user is initially redirected through EVELIXIA platform to the 
designated page. Access to the page is managed through the platform’s SSO 
mechanism, which will regulate which user roles have access to the specific 
facilities. The remainder of this chapter refers to the potential implementation of 
the second integration option (full-web) using VERIFY’s current user interface to 
provide guidance for further integration activities. It should be noted that, as part 
of VERIFY’s EVELIXIA adaptation activities, some non-essential elements of the UI 
may be hidden from view to simplify the users’ interaction with the application. In 
addition, some parameters/options may be simplified to adapt to the specific 
application usage scenarios pertinent to EVELIXIA. 
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3.2.2.1. Application entry 

The point of entry to the application will be the VERIFY's EVELIXIA dedicated 
dashboard (Figure 46) and the user will be prompted to select the "My Buildings" 
option (Figure 46, Choice 1). Subsequently entering the VERIFY-B Suite, the user 
may add a new building entry (Figure 46,Choice 3). Once created, the building 
entry is automatically saved, and the user may review, edit, clone, or delete it at 
any given time (Figure 46, Choice 2). 
 

 
Figure 46. VERIFY - Dashboard page 

When the user selects a listed building entry, a building-specific view is enabled, 
displaying all its details and characteristics (Figure 47). 
 

 
Figure 47. VERIFY - building-specific view 
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3.2.2.2. Building definition 

The LCA/LCC analysis in VERIFY-B begins with the building definition. The user is 
requested to insert building-level static data necessary for generating the 
building model: 

• Building attributes: type, outer dimensions, number of floors, floor area & 
per façade: glazing area, external wall area, type of glazing, type of 
insulation, orientation 

• Location details: address, zip code, country, altitude, coordinates 
• External factors: temperature set points (winter/summer), occupancy 

profiles, cost of energy per energy source type  

3.2.2.3. Scenario definition 

VERIFY conducts real-time, scenario-based LCA/LCC analyses comparing user-
specific investment scenarios per building entry prior and after the 
implementation of EVELIXIA's solutions (Figure 48). The user may create a new 
scenario (Figure 48, Choice 2), edit an existing scenario (Figure 48, Choice 1), or 
clone an existing scenario to generate a new one in a simplified manner. Upon 
creation, each scenario is automatically saved. 
 

 
Figure 48. VERIFY - Scenario definition 

The user may further refine those scenarios by selecting energy efficiency 
measures, adjusting system components, and modifying financial assumptions 
tailored to user-specific needs and goals. Prior to the LCA/LCC analysis, user can 
select which scenarios to include and compare, regardless of the number of 
scenarios created (Figure 49). 
 

 
Figure 49. VERIFY - Scenario selection 
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3.2.2.4. Component definition 

For each newly added scenario, user has to specify the component information, 
both static and dynamic, provided from the list of component groups (Figure 50, 
Choice 1). Upon selecting each tabbed group (Figure 50, Choice 2), the user may 
insert the relative information (incl. component type, power rating, installation 
year, efficiency factors, technical specifications per type, CAPEX and OPEX, 
interest rates, usage hours, emission coefficients, etc.). 
 

 
Figure 50. VERIFY - Component Tabs 

VERIFY’s interoperability is supported by independent messaging protocols and 
APIs. The required back-end operations are already in place, which allow seamless 
data exchange with third-party data platforms and external systems such as 
SCADA, EMS, and BEMS. As soon as the EVELIXIA platform is operational, the 
necessary back-end modifications of IS6 will take place to ensure the centralized 
and consistent data flow, making use of API and MQTT-based communication. 
The dynamic data per component can be provided through various data streams 
(i.e., manual entry, API Call, MQTT Queue) and formats (i.e., .csv, .json) via the "Data 
Sources" Component Tab (Figure 51). The minimum requirements need 
timeseries with at least hourly timespan and spanning over a full calendar year. 
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Figure 51. VERIFY -Data Sources 

To counter issues of incomplete datasets due to data scarcity, measurements 
inaccuracies, technical problems, and sensor sensitivity, VERIFY generates 
synthetic data through INTEMA, its internal simulation engine that employs 
predictive energy modelling. In case of total absence of data or mere building-
level values provided by the user (e.g., annual energy consumption for connected 
grids), INTEMA performs an on-demand disaggregation process, utilizing VERIFY's 
LCI to infer detailed, time-resolved data per component (Figure 52). 
 

 
Figure 52. VERIFY - Data source info for data disaggregation 

  



 

EVELIXIA – D4.1 Autonomous Building Digital Twins                                                   62 
 

3.2.2.5. LCA/LCC Analysis 

The combined model-driven and data-driven approach of IS6 uses physics-based 
simulations that incorporate passive features, active systems and environmental 
factors and financial information. IS6 backend functionality is structured to align 
with ISO standards (ISO 14040/14044 for LCA, ISO 15686-5 for LCC, ISO 16745-1 for 
determining and reporting carbon metrics) and EU-wide frameworks (Level(s), 
Energy Performance for Building Directive (EPBD)). Based on the detailed, real-
time LCA/LCC analysis of the resulting energy prosumption profile per building via 
VERIFY-B, IS6 generates the following KPIs: 
 

Environmental 
• Lifetime Primary Energy Demand (PED) 
• Lifetime Global Warming Potential (GWP) 
 
Economic 
• Lifecycle Costs (LCC)  
• Pay Back Time (PBT) 
• Levelized Cost of Electricity (LCOE) 
• Net Present Value (NPV) 
• Internal Rate of Return (IRR) 
• Return on Investment (ROI) 
 

The respective definitions, formulas & calculation methods for all the above KPIs 
are presented in Annex 6.1. 

3.2.2.6. Data Storage, Security & GDPR 

VERIFY securely stores all data within CERTH’s data center, utilizing structured 
access protocols to ensure confidentiality and integrity. Data generated within 
VERIFY can be exported in multiple formats (e.g.,.csv,.json) and made available to 
interested partners upon request through EVELIXIA platform. Controlled access to 
scenarios will be managed through EVELIXIA’s user access control system, with 
each user having access to specific buildings and scenarios. The details of the 
access rules will be determined during the platform’s integration. VERIFY does 
not process personal data subject to GDPR. It exclusively handles non-personal 
data related to the energy performance of facilities and their billing 
arrangements. 

3.2.3. Evaluation & Results 

The results of IS6 can be disseminated in three primary formats, depending on 
the integration option adopted in EVELIXIA: 

• cumulative list & graphs (online) 
• exportable time series  
• exportable report 
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Figure 53. VERIFY - Indicative list of KPIs in the results page 

VERIFY’s own online results page offers a detailed tabulated list (Figure 53) 
alongside dedicated visualization plots (Figure 54). These plots incorporate 
cumulative curves that extend over the entire project lifespan, thereby providing a 
comprehensive long-term perspective on energy performance, emissions 
reductions, and cost evolution. The availability of exportable time series data 
further supports detailed post-analysis and integration with other external 
analytical tools. 
 

 
Figure 54. VERIFY - Indicative resulting plots of KPIs 

The evaluation of the IS6 development is conducted through a dual-path test run 
(Figure 55) ) to ensure reliability of results, applied to a Case Study for CPERI office 
building of the Greek PS. In the first approach, the building's annual energy 
consumption is generated from iSCAN module of IS5 - "Building Energy Modelling 
and Simulation" (see2.6). This input is uploaded into VERIFY to disaggregate into 
component-specific information for both baseline and upgrade scenarios and 
calculate the KPIs (iSCAN-approach). Concurrently, the total energy consumption 
is also generated internally through INTEMA to disaggregate the building-level 
input data into component-level consumption series for each scenario.  
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Figure 55. Overview of the dual-path test run for IS6 

The two approaches perform an annual analysis that refers to different calendar 
year (2022 for iSCAN-approach and 2023 for INTEMA-approach) due to respective 
availability of historical data, resulting in different energy profiles. Moreover, 
significant deviations in the estimated annual (total) energy consumption and 
minor deviations across KPIs are further attributed to inherent energy modeling 
differences in distinct assumptions and computational frameworks employed 
between the two simulation engines. However, the comparative analysis 
examines the relative difference between the baseline (prior to EVELIXIA), and the 
upgrade scenario (following the implementation of EVELIXIA’s solutions) of each 
approach. 
As a distinct parameter for a comparative analysis for the two approaches, the 
Lifetime Primary Energy Demand (PED) KPI is selected due to its intuitive and 
clear definition as a benchmark to validate the accuracy of the estimations of the 
simulated data generated IS5-ISCAN in comparison to the ones retrieved from the 
default internal simulation engine (INTEMA). This comparison is limited for the 
purposes of the initial test run, as no further calibration process is integrated into 
the tool. During implementation dynamic data will be sourced either directly from 
the EVELIXIA platform or via the IS5-ISCAN in case of simulated/synthetic data. 
PED is calculated using the following formula: 

𝐿𝑃𝐸 = 𝐼𝑃𝐸 + ∑(𝑂𝑃𝐸
[𝑖]
)

𝑁

𝑖=1

 

Where: 

𝐿𝑃𝐸 is the Lifetime PE Demand of the project; 

𝐼𝑃𝐸 is the Infrastructure (embodied) PE Demand; 

𝑂𝑃𝐸
[𝑖]  is the Operational PE demand of the building’s components in year i.  

 
The resulting values for PED between approaches (Figure 56) demonstrate a high 
degree of qualitative alignment, while quantitatively remaining within the same 
order of magnitude (39% difference), indicating a similar data handling and 
processing functions. The same outcome applies to all KPIs, based the range of 
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the deviation of their relative difference, resulting in 0.9%-1.21% deviation for 
Environmental KPIs and a 26.19% difference in for Cost Savings (more sensitive to 
the total energy consumption by definition, yet correlated with the difference in 
PED). These results reveal that the KPI values reveal a consistent pattern in both 
approaches, regardless of the original input. A comprehensive tabulation of the 
cumulative results across KPIs, covering both scenarios for each approach, and 
the relative differences and deviations are presented in Annex 6.1. 
 

 
Figure 56. Lifetime Primary Energy Demand for the baseline scenario 

(left: iSCAN-approach, right: INTEMA-approach) 

3.2.4. Next Steps 

In the forthcoming phase of the EVELIXIA project until M24, the following key 
advancements and initiatives pertaining to IS6 are underway: 
 

• Static Data Collection for Energy Models: Static data will be systematically 
collected for all buildings across all EVELIXIA Pilot Sites (PS) to support the 
development of accurate energy models. In close collaboration with T4.2, 
T5.2, WP4, and WP5 Leaders, PS managers will be iteratively engaged to 
provide all necessary static building information for building model 
generation within IS6 and discuss mitigation strategies for potential data 
shortages, thereby ensuring data integrity and enhancing model reliability. 

 
• Interconnection with the EVELIXIA Platform: In parallel with the 

upcoming deployment and integration of EVELIXIA's platform, 
CERTH/CPERI will work closely with the relevant task leaders to establish a) 
an automated dynamic data exchange mechanism via API, eliminating the 
need for human intervention, enhancing communication reliability and 
enabling real-time calculations that are essential for dynamic system 
performance, and b) the re-direction process to the dedicated domain of 
VERIFY through EVELIXIA platform in the case of the full-web integration, 
solidifying the accessibility of the solution 
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The collective work performed thus far, together with the planned actions in the 
months to come, delineate the roadmap for delivering an advanced tool designed 
to support building-level investment strategies that cater to project-specific 
targets. IS6 underpins the development of multi-utility services and viable, 
adaptive investment strategies, ultimately contributing to the enhancement of 
the Autonomous Building Digital Twin with self-decision-making capabilities. 

3.3. SRI Advisor (IS7) 

The SRI Advisor tool (SRIA) aims to provide tailored recommendations on how to 
improve the SRI class of a building. Rather than a “push-button” tool delivering 
automated recommendations, the SRIA is intended to be a decision-support tool 
determining a short list of the most cost-effective smartness upgrades adapted to 
the building and its owner’s priorities. This list should be critically analyzed by the 
user of the tool (SRI assessor) before being discussed with their client (building 
owner or manager). The final recommendations to be implemented in the 
building will then be co-designed with the client. The tool includes the following 
components as showed in Figure 56: 

1) A questionnaire to understand building characteristics and its owner’s 
priorities,  

2) An SRI calculation engine using the building features,  
3) A cost database gathering all the possible smartness upgrades’ CAPEX and 

OPEX,  
4) An optimization engine determining the most cost-effective smartness 

upgrades adapted to the building features and the owner’s priorities,  
5) An interactive interface presenting the short list of the most cost-efficient 

smartness upgrades, among which the user can select the preferred ones. 
 

 
Figure 57. SRIA Components Diagram 

At this stage of the project, the methodology is fully developed (including the user 
questionnaire), the cost database is partially populated, and the development of 
the optimization engine and interactive interface has started. 
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3.3.1. Objectives 

The SRIA tool advances the state of the art by supporting users in prioritizing 
actions to improve their SRI score in a cost-efficient manner. SRIA simplifies the 
optimization calculations, providing clear recommendations to building owners. 
The cost database within the tool gives assessors a clear view of upgrade package 
prices in different regions, so they can suggest reliable estimates. 
In comparison with state-of-the-art solutions such as easySRI Technical and 
Financial indicators for SRT1 and SRI-ENACT Decision support tool for supporting 
decisions regarding the smart-ready upgrades2, SRIA brings the following 
advances: 

• SRIA includes data for the 56 SRI services defined in the generic SRI 
technical framework (method A and method B),  

• SRIA’s cost database covers 30 countries (EU27 + Norway, Switzerland and 
United Kingdom),  

• SRIA covers the whole SRI scope (7 impact criteria), not limited to energy 
savings,  

• SRIA considers real building characteristics and user preferences. 
 

3.3.2. Methodology 

 
A single questionnaire is developed to collect at once: 

• The building features needed to determine which smart-
ready services apply to the building. For instance, if the building 
has no cooling system, the services included in the cooling domain 
are not applicable and do not need to be assessed by the SRI 
engine. Similarly, if the heating system of the building counts one 
single gas boiler, the services related to heat pumps are not 
applicable, as well as the service related to sequencing in the case 
of different heat generators.  

• The building features needed to determine the cost of smartness 
upgrades.  For instance, the number of air-handling units will determine 
the cost of upgrading the ventilation system of the building; the number of 
rooms in the building will determine the cost of installing occupation 
detection sensors; the number of windows will determine the cost of 
upgrading the building envelop systems; etc.  

• Users’ preferences in terms of smartness ambition and perspective. 
Some building owners may want to level up the SRI class of their building 
by one, and others by two or more letters. Some may consider the SRI score 
overall, while others may want to improve more particularly one of the 
three key functionalities addressed by the SRI. If the user selects no specific 
preferences, by default the SRIA tool will propose users to level up the 
overall SRI score by one class at the lowest possible price. 

The full questionnaire can be found in IS7 Annex 1 - SRIA questionnaire. 
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SRIA is equipped with a SRI calculation engine, developed 
according to the updated SRI calculation methodology (V4.5), to 
help the end user calculate the SRI score of the existing building. It 
makes use of the building features needed to determine which 

smart-ready services apply to the building, collected in the previously mentioned 
questionnaire. Based on the functionality level of each service, it calculates the SRI 
score of the building and the detailed scoring matrix. 

 
The unit cost of smartness upgrades is needed for each smart-ready 
service and each functionality level (e.g., cost of installing 
thermostatic valves and cost of motorizing blinds). Within the 
generic SRI technical framework3, there are 178 pairs [service, 
upgrade] to be considered (56 services, multiplied by 2, 3, or 4 

possible upgrades, depending on the number of functionality levels). For each of 
these 178 pairs, 3 cost components must be identified, the first two forming the 
CAPEX and the third one corresponding to the yearly OPEX: 

• average price of the products enabling the upgrade,  
• cost of the corresponding installation service, and   
• in some cases, yearly operational and maintenance costs. 

These cost components should be adapted to each of the 30 countries targeted 
by the tool. Therefore, in total, the cost database to be built should have a size of  
16,020 cost items, which need to be identified (178 x 3 x 30).  
The following choices are adopted to reduce the size of the cost database: 

• Single upgrades enabling levelling up the functionality level of several 
services: In practice, a single intervention can allow upgrading at once the 
functionality level of several services, typically those related to heating and 
cooling, or those associated with the presence of occupancy sensors. In this 
way, from the initial list of 178 pairs [service, upgrade], 33 pairs can be 
discounted. The list of upgrades considered by the SRIA tool, their links 
with smart-ready services functionality levels and the type of professionals 
needed to implement each action can be found in IS7 Annex 2 - Example of 
smartness upgrades implemented in the SRIA.  

• Geographical differentiation of installation service cost vs. single 
product cost: Most products needed to upgrade smart-ready services are 
available at the EU level from international manufacturers and distributors. 
Therefore, in the cost database, for each product only one price is 
considered, applying to our 30 countries. National differences (e.g., taxes) 
are neglected. By contrast, the cost for the installation services of these 
devices is obviously different from one country to another. In order to build 
a consistent database, it has been decided to estimate this cost as follows: 

Estimated number of 
hours needed to install the 

device in question  
x 

Number of devices to 
be installed 

x 
Average hourly rate of a 

professional installer 

(same value for all buildings 
and all countries) 

 (depends on the 
building’s 

characteristics) 

 (depends on each country) 
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Therefore, only the average hourly rate of a professional installer must be 
identified for each country. An estimation of these rates per country is 
calculated by using an average rate for a given country (e.g., France, where 
the R2M team is located), and by multiplying it with a country coefficient 
based on the average GDP per capita in order to derive hourly rates in the 
other countries. 

• Yearly operational costs: As OPEX are not expected to be very significant, a 
flat OPEX rate is applied by default, corresponding to 5% of the CAPEX. In 
specific cases, for which OPEX are expected to be more expensive, specific 
research is conducted to identify the corresponding value.  

• Low-impact upgrades: As demonstrated by a sensitivity analysis (see 
below), upgrading some services has a very low impact on the SRI score. 
Therefore, these upgrades are very unlikely to be short-listed by the SRIA, 
whatever their actual cost is. As a result, resources may not be wasted in 
assessing their cost with precision. 

Concerning the data sources for the cost database, a combination of different 
sources is used to populate the cost database reliably: (i) desk research, (ii) 
collecting input from EVELIXIA’s partners and (iii) conducting interviews with 
external market experts.  
 

Starting from the SRI assessment of a building, the optimization 
engine seeks to identify, amongst all possible upgrades, the ones 
which have the lowest cost per % of improvement of the SRI score. 
In mathematical terms, the function F to be minimized is the 

following: 

 
Where: 

• C is the total cost of an action aiming at improving the SRI score, with 
the following parameters:  

• N represents the number of years during which the calculation 
applies; it can typically be the lifespan of the investment (e.g., 20 
years); 

• r represents a discount rate used to determine the present value of 
future cash flows (e.g., 3%); 

• Cn represents the yearly costs in year n of the action (e.g., yearly 
operational expenditures or OPEX); 

• C0 represents the cost of the initial investment (e.g., capital 
expenditure or CAPEX).  

• I is the impact of this action on the SRI score expressed in percentage, 
calculated as the difference between the SRI score after this action is 
implemented (SRIf) and the initial SRI score (SRIi). 

The calculation should be run several times to identify the optimal upgrades one 
by one to establish a short list of the most cost-efficient upgrades. 
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The outcomes of the tool include (see Figure 57): 

• A short-list of upgrades, sorted by increasing order of 
their cost per % of improvement on the SRI score (most cost-
efficient actions first). Via an interactive interface, the SRIA user (SRI 

assessor) should be able to choose the actions they wish to include in 
the upgrade package proposed to their client (the building owner or 
manager) to level up the SRI score of their building by one class. They 
may choose, if relevant in a specific situation, to skip an action even 
though it is in theory more cost-efficient than the next one.   

• For each upgrade, their cost and their impact on the SRI score.  

• The overall resulting SRI score, sub-scores per key functionality, 
impact criterion and technical domain, and the detailed scoring 
matrix.  

• An invitation to simulate different scenarios, such as more 
ambitious upgrade packages (e.g., to level up the SRI score by two 
classes), or the focus on one of the three key functionalities of the SRI. 

 

Figure 58. SRIA output mockup 

3.3.3. Evaluation & Results 

The complete SRIA tool, being still under development, has not been tested yet. 
However, a preliminary step has been achieved concerning the SRI calculation 
itself: a calculation structure has been designed to highlight the impact on the 
SRI score of the upgrade of each service by one level, which the usual 
calculation sheet4 does not allow. This structure is fully in line with the description 
of the SRI calculation steps in Annex I of the Commission Delegated Regulation 
(EU) 2020/2155. As a result, a percentage is associated to each pair [service, 
upgrade].  
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As illustrated at the Table 2, different shades of green allow quickly identifying the 
upgrades that have the higher impact; and in the last column, different shades of 
pink allow identifying the most impactful services (assuming the starting point is 
level 0 for all services, and the end point the smartest level). In this example, the 
three services with the most significant impact on the overall SRI score are H-1C 
“Storage and shifting of thermal energy” (10.4%), H-1a “Heat emission control” 
(8.6%) and MC-25 “Smart Grid Integration” (8.5%). 
 

Table 2. Impact of each service upgrade for a residential building in Northern 
Europe, with a single boiler for heating, and no cooling system; assessment with 

method A; interest in the impact on the overall SRI score 
0 

 
 
The list of most impactful service upgrades mentioned in the previous example 
and the corresponding impact on the SRI score depend on each building. For a 
different climate zone, a different building type and different settings in terms of 
applicable services, the ranking of impactful upgrades will be different. However, 
it is likely that upgrading some services will be impactful in all cases; and 
upgrading some others might have a very little impact in all cases. This is why a 
sensitivity analysis has been conducted. 
To do so, to always consider the same list of services, all services from the 
catalogue A or B are considered applicable (which is a virtual situation, as some 
services are mutually exclusive). The corresponding impacts of each service 
upgrade from 0 to the next level, up to the smartest ones is considered for 40 
cases, each case being defined by: (1) The focus chosen by the user (4 
possibilities): Impact on overall SRI score, or impact on one of the three key 
functionalities (efficiency, occupant, flexibility); (2)The building type (2 
possibilities): residential or non-residential; (3) The climate zone (5 possibilities): 
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Northern Europe (NE), Western Europe (WE), Southern Europe (SE), North-Eastern 
Europe (NEE) or South-Eastern Europe (SEE). 

• Concerning method A (simplified service catalogue), upgrading services 
H-1a, H-2b, V-1a and MC-13 from 0 to the smartest level always have a high 
impact, for all climate zones and building types. Upgrading services H-1c, H-
3, C-4 and MC-25 from 0 to the smartest level also have high impact in most 
cases. By contrast, upgrading services L-1a, DE-4, EV-15, EV-16 and EV-17 
from 0 to the smartest level always have a very low impact on the overall 
SRI score, for all climate zones and all building types, even more so for 
incremental upgrades from level 0 to level 1, level 1 to level 2, etc. As a result, 
it is quite unlikely that upgrading these services will be advised to level up 
the overall SRI score - except if all other services already score very high or if 
these upgrades prove to be extremely cheap.  

• Concerning method B (detailed service catalogue), the list of service 
upgrades with the highest impact is also quite stable. Indeed, upgrading 
from 0 to the smartest level the services H-1a, H-2b, H-2d, H-3 and H-4 in 
the heating domain, and MC-3, MC-4, MC-9 and MC-13 in the monitoring & 
control domain, always have a high impact, for all climate zones and 
building types. Upgrading services H-1b and H-1f from 0 to the smartest 
level also have high impact in most cases. By contrast, upgrading services 
H-1c, H-1d, H-2a, C-1c, C-1d, C-1f, C-2a, C-2b, C-3, V-1c, L-1a, DE-2, DE-4, EV-15, 
EV-16 and EV-17 always have a very low impact (< 1%) on the overall SRI 
score, for all climate zones and all building types. As a result, it is quite 
unlikely that upgrading these services will be advised to level up the overall 
SRI score - except if all other services already score very high or if these 
upgrades prove to be extremely cheap. Finally, there is a significant 
difference in the impact of upgrading services in the electricity domain 
depending on the building type (residential or non-residential). 

The detailed results of the sensitivity analysis are presented in IS7 Annex 3 - 
Sensitivity analysis for the SRIA. 
Concerning the evaluation of the performance of the SRIA tool, the following 
indicators will be used: 

• Average number of actions listed to level up the SRI class by one, 
• Average number of professionals needed to level up the SRI class by one, 
• Average cost efficiency of the proposed upgrade package to level up the 

SRI class by one (unit: €/ sqm / % of SRI score increase). 
In addition, the following aspects will be assessed: 

• User-friendless, evaluated using the System Usability Scale (SUS) score, 
described in the D1.5. 

3.3.4. Next Steps 

The development of the first prototype of the SRIA tool will be implemented 
according to the following schedule: 

• The development of the functionality for calculating the SRI score upgrade 
per functionality level includes the creation of a dataset indicating the 
upgrade impact per case, as well as the implementation of filtering 
algorithms and tool features to guide the end user toward the most 
optimal actions. A first complete version of the above is expected by M20. 
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• In parallel, the calculation of costs per recommendation requires both the 
development of the cost database and the implementation of functions to 
enable cost estimation based on building characteristics. Both 
functionalities are expected to be completed by M22. The cost database will 
be periodically updated with data related to technical equipment and labor 
costs, as this is an ongoing task that will continue until the end of Task 4.2 
(M34). 

• The user interface is a key component, reflecting the core functionalities of 
the tool’s engine. Therefore, its development will proceed in parallel with 
the back-end development. A first version is expected by M22 and will be 
periodically updated in line with progress on the core functionalities. 

• The testing phase will begin after M22, during which the SRIA tool 
prototype will undergo thorough testing by R2M. Feedback loops will be 
established with CERTH’s development team to ensure iterative 
improvements. Testing will cover a variety of building types, ranging from 
simple to complex, culminating in the evaluation of the tool at the 
EVELIXIA pilot sites in Spain and Denmark. 

3.4. Proactive Demand Planning (IS9) 

Energy demand in buildings has steadily increased over the years, necessitating 
advanced strategies to ensure energy efficiency and cost savings while 
maintaining user comfort. Proactive demand planning plays a crucial role in 
balancing electricity consumption, mitigating demand peaks, and optimizing 
energy usage in a way that benefits both end-users and energy providers. By 
strategically shaping energy demand ahead of time, buildings can reduce 
dependency on costly peak-hour electricity, enhance renewable energy 
integration by promoting self-consumption, and contribute to grid stability. 
Additionally, maintaining thermal comfort can be achieved by leveraging user-
defined preferences or extrapolating historical comfort behavior, ensuring that 
demand adjustments align with occupant needs. 
 
The proactive demand planning service (IS9) is designed to reshape day-ahead 
electricity demand providing user-based recommendations, ensuring an 
optimized balance between energy savings and user comfort. The tool will be 
responsible to reshape the aggregated building demand for the day-ahead, based 
on i) the different expected OPEX from multiple cross-vector energy systems’ 
operating conditions (e.g., boilers, multiple type of heat pumps, solar thermal 
collectors, PVs and storage technologies), ii) the forecasted energy prices 
(historical data retrieved from relevant databases e.g., ENTSO-E APIs), iii) the 
forecasted aggregated demand flexibility (considering convenience) - based on 
the Flex Forecaster module output, and iv) the forecasted local RES/storage 
profiles; iv) the selected user comfort preferences; Unlike traditional demand 
response methods that react to grid signals, this approach anticipates energy 
needs and adjusts consumption patterns accordingly. This enables buildings to 
shift demand intelligently, avoiding high-cost periods and reducing unnecessary 
energy expenditure while sustaining indoor thermal comfort levels. A key 
component of this service is its ability to evaluate cost-benefit trade-offs at the 
building level. By leveraging cost-benefit matrices, the system ensures that 
energy efficiency measures do not compromise user satisfaction or operational 
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needs. This approach fosters a more resilient and adaptive energy management 
strategy, making buildings not just passive consumers, but active participants in 
energy optimization. 

3.4.1. Objectives 

The main objectives of IS9 within the EVELIXIA context are: 
• Sustaining thermal comfort for building occupants while reshaping 

electricity demand. 
• Maximizing energy efficiency by leveraging flexibility in electricity 

consumption. 
• Reducing monetary costs by avoiding peak-hour electricity charges and 

optimizing energy usage. 
• Enhancing the integration of renewable energy sources by aligning 

demand with availability. 
• Encapsulating and providing cost-benefit evaluations to ensure optimal 

trade-offs between cost savings and comfort. 
• Alleviate the optimization problem by incorporating cost-benefit matrices 

while also enhancing the transparency and interpretability elements of the 
adopted intelligent solution. 

These objectives aim to establish a proactive, cost-effective, and user-centric 
energy demand planning service at building level, ensuring that energy savings 
do not come at the expense of occupant well-being. 

3.4.2. Methodology 

IS9 considers the development of a proactive demand planning service, 
responsible for day-ahead demand reshaping based on novel episodic RL 
methods by CERTH and cost-benefit matrices by UNIGE to enable energy cost-
savings without jeopardizing energy efficiency at building level. 

3.4.2.1. Cost benefit matrices 

The Cost/Benefit Matrices are built to summarize and easily represent the cost 
associated to the operational expenditure including the effect of flexibility 
margins on the real components off-design performance in order to provide the 
RL agent with thermodynamically accurate information including non-linear 
ones. Moreover, those matrixes can be used for an easy representation of the cost, 
that after the RL agent execution can be used for debug and verification by not 
expert, providing an element of transparency of the calculation, increasing the 
user acceptance. An example of off-design behavior, that should be taken into 
account when solving the optimization, is related to the HVAC systems as 
function of two parameters: ambient temperature and relative load, is presented 
in Figure 59. 
 
In order to implement the cost Benefit Matrices two kind inputs are required daily 
internal and external: 
 
Internal: Cost Optimized Base Line [1,24] from IS3 and Updated Flex Constraints 
[2,24] from IS4 (i.e. the vectors of  hourly 𝑓𝑡

𝑢𝑝and 𝑓𝑡𝑑𝑜𝑤𝑛. Those values are fitted 
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within a [2n+1,24] constant size matrix, created by dividing the admissible load 
variation into the same number of n points for both flexibility directions and made 
non dimensional based on the BL value. So for each hour the existence space of 
admissible solution will be, expressed as with Matlab syntax: 
 

 
Figure 59. Example of the effect of temperature lift (left) and relative load (right) on 

the Coefficient of Performance of a Heat Pump 

[𝑓𝑡
𝑢𝑝:

(𝑓𝑡
𝑢𝑝
−𝐵𝐿)

𝑛
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(𝐵𝐿−𝑓𝑡
𝑢𝑝
)

𝑛
:
(𝐵𝐿−𝑓𝑡

𝑢𝑝
)

𝑛−1
:𝑓𝑡
𝑢𝑝
]/. 𝐵𝐿 

This matrix of investigated space is then reflected into the output effect evaluated 
as the super position of the effect of the m-th appliances (e.g. HVAC, White Goods) 
that are involved in the optimization. The results matrixes provides: efficiency 
values, consumption effect as energy (kWh) or expenditure (€), and 
environmental impact as CO2 Emissions. The effect of each element remain 
available for future investigation. 
External: Price tariffs (time series). These are the energy consumption prices for 
each country based on the Entsoe API, which are better discussed in the next 
paragraph. 

3.4.2.2. Day-Ahead Retail Energy Prices 

Implicit Demand-Side Flexibility depends on the access of customers to market-
related retail pricing. Electricity retailers, including default providers, should offer 
price plans that allow consumers to choose hourly, or where applicable shorter 
time-interval pricing, that reflect the actual market conditions and create 
incentives for consumers to align their demand with system conditions. 
According to [10], in 2019, only eight countries have implemented dynamic 
electricity prices: Denmark, Estonia, Finland, Norway, Spain, Sweden, The 
Netherlands and The United Kingdom. However, Directive (EU) 2019/944 of 5 June 
2019, on common rules for the internal market for electricity and amending 
Directive 2012/27/EU, introduces new provisions that entitle all final customers 
who have a smart meter installed to conclude a dynamic electricity price contract 
so a wide application is expected. 
Actual analyses rely on Electricity Wholesale price, as retrieved day ahead from 
ENTOSE via API. This represents a pure dynamic price where no impact of fixed 
mark-up or cost and proportional taxation (i.e., VAT) is present. The first element 
increases the average price without affecting the distance among peak and valley 
prices. This reduces the percentage impact of the savings with respect to the 
whole energy cost. The latter effect, a proportional increase, even maintaining the 
same average price of electricity, increases the absolute difference between peak 
and off-peak energy prices, magnifying the impact of Implicit Demand-Side 
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Flexibility including the usage of Storage. For this reason, the data of Eurostat 
based on semester excluding and including taxes and levies were retrieved to 
setup the scenario analysis for different EU countries. 
 

3.4.2.3. Proactive Demand Planning using RL 

A Markov Decision Process (MDP) is a mathematical framework for decision-
making under uncertainty, where an agent interacts with an environment to 
maximize cumulative rewards. An MDP is defined by the tuple 𝑀 =
(𝑆, 𝐴, 𝑃, 𝑅, 𝛾), where 𝑺 is the state space representing all possible states of the 
environment; 𝑨 is the action space representing the set of all possible actions an 
agent can take; P( s′ ∣ s, α ) is the transition probability function, defining the 
probability of moving from state 𝑠 to state 𝑠′ given action 𝛼; 𝑅(𝑠, 𝑎) is the reward 
function, which gives a numerical reward for taking action𝛼 in state 𝑠; γ ∈ [0,1]is 
the discount factor, which determines the importance of future rewards; At each 
timestep t, the agent: observes a state 𝑠𝑡 ∈ S, then selects an action 𝑎𝑡 ∈ A and 
based on that action receives a reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡) and finaly transitions to a new 
state 𝑠𝑡+1 ∼ P(s′ ∣ 𝑠𝑡 , 𝑎𝑡). The agent’s goal is to learn a policy 𝜋(𝛼|𝑠) that maximizes 
the expected cumulative reward 𝐽(𝜋) = 𝔼[∑ 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)

∞
𝑡=0 ].  

 
The state space consists of all relevant variables that define the current status of 
the environment and for the energy management problem, the state space is 
given by the following state vector 𝑠𝑡 = [𝑃𝑡 𝐵𝑡 𝑈𝑡 𝐷𝑡 𝑃𝑡+1 𝑃𝑡+2 ⋯ 𝑃𝑡+23 𝑅𝐷𝑡], 
where 𝑃𝑡 is the electricity price at time t, 𝐵𝑡 is the baseline consumption at given 
time t, 𝑈𝑡 and 𝐷𝑡 are the upper and lower flexibility bounds respectively defining 
the acceptable consumption ranges sustaining thermal comfort preferences, 
𝑃𝑡+1:𝑡+24 are the price predictions within the day since those values are available 
under a day ahead pricing concept and 𝑅𝐷𝑡  defines the remaining energy 
demand to be balanced offering the residual of pre and post demand 
management operation or the residual between the recommended 
decision/action and the baseline consumption profile as an alternative conceptual 
representation of energy balance. Note that all states are normalized. From the 
action space point of view, the action space defines the possible decisions the 
agent can make and for the energy optimization problem, the action 𝑎𝑡 is the 
recommended energy consumption profile at each timestep such that 
𝑎𝑡  𝜖 ℝwhich is the normalized adjustment to energy consumption, i.e.,𝑎𝑡  𝜖 [0,1]and 
the action should be preferably bounded by flexibility constraints to sustain 
thermal comfort. 
 
The reward function describes the defined objectives of the under-examination 
problem and its simplest form encapsulates thermal comfort and monetary cost 
as follows: 𝑟𝑒𝑤𝑎𝑟𝑑 =  −{𝛼 ⋅ 𝐸𝑛𝑒𝑟𝑔𝑦 +  𝛽 ⋅ 𝐶𝑜𝑠𝑡} which practically unfolds the inherent 
trade-off between energy consumption and electricity bill through the two 
weighting factors. After exploring and evaluating different policies, the reward 
function is designed to incorporate a set of individual objectives like monetary 
cost reduction, residual demand minimization and maximization of flexibility 
bounds satisfaction:  

𝑅(𝑠𝑡 , 𝑎𝑡) = 𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑠𝑡, 𝑎𝑡) + 𝑅𝑐𝑜𝑠𝑡(𝑠𝑡, 𝑎𝑡)+𝑅𝑓𝑙𝑒𝑥(𝑠𝑡, 𝑎𝑡) 
where the first penalty term is given by: 
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𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑠𝑡, 𝑎𝑡) =

{
 
 

 
 𝑝𝑎𝑟1 ∙ |

𝑅𝐷𝑡
∑ 𝐵𝑡
23
𝑡=0

| , 𝑅𝐷𝑡 > 0

𝑝𝑎𝑟2 ∙ |
𝑅𝐷𝑡

∑ 𝐵𝑡
23
𝑡=0

| , 𝑅𝐷𝑡 < 0

0,𝑅𝐷𝑡 = 0

 

where par1 and par2 are penalty factors and this term penalizes any residual 
energy balance at the end of the day, so t in this case is the final time step of the 
day, i.e., Tlast=23. Residual demand at time t, denoted as 𝑅𝐷𝑡, represents the 
difference between the baseline energy consumption and the energy action 
taken by the agent and it is given by: 𝑅𝐷𝑡 =  𝑅𝐷𝑡 + 𝐵𝑡 − 𝑎𝑡. In respect to the second 
penalization order, its form is given by: 
 

𝑅𝑐𝑜𝑠𝑡(𝑠𝑡, 𝑎𝑡) =

{
 
 

 
 𝑝𝑎𝑟3 ∙ (

𝑎𝑡 − 𝐷𝑡
∑ 𝐵𝑡
23
𝑡=0

)

2

, 𝑃𝑡 >
1

6
∑𝑃𝑘

𝑡+6

𝑘=𝑡

𝑝𝑎𝑟4 ∙ (
𝑎𝑡 −𝑈𝑡
∑ 𝐵𝑡
23
𝑡=0

)

2

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where par1 and par2 are still design parameters and this penalty term prompts 
the agent to consume the least amount of energy if current price is higher than 
the expected one in the near future intraday (mean of next 6 hours), otherwise 
produces a recommendation closer to the upper flexibility bound to extrapolate 
the lower current price in respect to the expected one within the predefined 
horizon. Note that the horizon is also a design parameter and in practice affects 
the response speed of the agent since the price profile of the day based on the 
possible fluctuations formulate this behaviour. Carefully adjustment is needed for 
the future implementations and it is possible to have different horizons for 
individual inter-country cases based on the trends that emerge in different 
regions. Regarding the third penalty term: 

𝑅𝑓𝑙𝑒𝑥(𝑠𝑡, 𝑎𝑡) =

{
 
 

 
 𝑝𝑎𝑟5 ∙ (

𝑎𝑡 − 𝑈𝑡
∑ 𝐵𝑡
23
𝑡=0

)

2

, 𝑎𝑡 > 𝑈𝑡

𝑝𝑎𝑟6 ∙ (
𝑎𝑡 − 𝐷𝑡
∑ 𝐵𝑡
23
𝑡=0

)

2

, 𝑎𝑡 < 𝐷𝑡

0, 𝐷𝑡 ≤ 𝑎𝑡 ≤ 𝑈𝑡

 

where again par5 and par6 are design parameters. Note that the similarity in the 
mathematical formulation of 𝑅𝑐𝑜𝑠𝑡(𝑠𝑡, 𝑎𝑡)and 𝑅𝑓𝑙𝑒𝑥(𝑠𝑡, 𝑎𝑡) arises from the shared 
principle of penalizing deviations from an optimal energy consumption level. 
However, each term serves a distinct purpose in guiding the agent’s decision-
making: 

1. 𝑅𝑐𝑜𝑠𝑡(𝑠𝑡, 𝑎𝑡) – Incentivizing Cost-Efficient Energy Consumption 
o This term encourages the agent to adjust its consumption based 

on predicted price trends.  
o If the current price is high compared to the expected average over 

the next six hours, the agent is penalized for consuming too much 
and should reduce consumption (closer to 𝐷𝑡). 

o If the current price is low, the agent is encouraged to consume 
more (closer to 𝑈𝑡) to exploit the economic benefit of lower electricity 
costs.  

o The penalty is quadratic, meaning larger deviations from the 
suggested optimal consumption result in greater penalties. 
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2. 𝑅𝑓𝑙𝑒𝑥(𝑠𝑡, 𝑎𝑡)– Ensuring Flexibility Constraints Are Respected 
o While 𝑅𝑐𝑜𝑠𝑡(𝑠𝑡, 𝑎𝑡) incentivizes energy consumption adjustments 

based on pricing, 𝑅𝑓𝑙𝑒𝑥(𝑠𝑡, 𝑎𝑡)enforces physical and operational 
constraints.   

o The agent is penalized if it exceeds the upper bound 𝑈𝑡or falls 
below the lower bound 𝐷𝑡 like adding an extra layer of penalization 
to guarantee that the agent will deviate within the preferred thermal 
comfort bounds. 

o This term ensures that energy recommendations are feasible and 
do not violate thermal comfort preferences or grid constraints. 

o The quadratic penalty form acts as a strict deterrent, reinforcing 
adherence to operational boundaries. 

3.4.3. Evaluation & Results 

In order to evaluate the performance of the proactive demand planning tool that 
is formulated using Reinforcement Learning, we utilised data from the Greek pilot 
as a proof-of-concept. More specifically, 5 consecutive days were used for training 
the adopted methodology and 1 day for testing. The under-examination period 
concerns heating-demand season with similar energy demands for the 
considered building. Figure 60 presents the resulted performance of the proactive 
demand planning tool for an indicative day in a day-ahead setting. Notations of 
Baseline, Up and Down denote the predictions of baseline energy consumption 
and the corresponding flexibility bounds respectively. Note that these serve as 
input variables (states) for the RL formulated agent (in this example, those are 
simulated trajectories but eventually they will be the direct predictions given by 
IS3 and IS4 after integration part is done) alongside the pricing profile  that is 
provided daily before midnight for the next day in country-level electricity 
markets. At later stages, the pricing profile will be formulated to be closer to the 
retail price that customers pay in electricity bills. However, even with the Entso-e 
day-ahead included prices, the rationale remains valid in demonstrating the 
functionalities of the developed tool. As it can be observed, the agent (Decision) 
provides a trajectory which recommends higher energy consumption during 
lower pricing periods of the day. Three primal metrics are measured in order to 
assess the energy efficiency consumption (this is the residual demand that shows 
the deviation of the total energy consumed for the day between decision and 
baseline), cost (this is the monetary cost as a direct projection of the electricity bill) 
and the thermal comfort deviation (this is to show how much is the thermal 
comfort penalization). Table 3 shows the percentage difference between baseline 
energy consumption and the decision recommendation produced by the RL 
agent. Basically, the agent produced a day-ahead trajectory that consumes 1.31% 
less energy and 2.51% less costly in terms of Euros compared to the baseline. 
Lastly, there was penalization on thermal comfort bounds. 
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Figure 60. Proactive demand planning performance for an indicative day 

Table 3. Resulted performance in terms of energy, cost and convenience metrics 

Residual Energy Monetary Cost Thermal Comfort Deviation 

1.31% 2.51% 0% 

 

3.4.4. Next Steps 

Building upon the current implementation of the Proactive Demand Planning 
tool, the next phase of development will focus on refining and expanding its 
capabilities to enhance decision-making, optimize trade-offs, and improve real-
world applicability. The key directions for future work include: 

• Reward Function Reformulation: The current reward function balances 
residual energy minimization, cost reduction, and flexibility satisfaction. To 
further refine decision-making, we will explore alternative weighting 
schemes that enable dynamic trade-offs among these objectives. This will 
allow for scenario-specific adaptations where energy efficiency, monetary 
savings, or thermal comfort constraints may take priority depending on 
user preferences, energy market conditions, or operational requirements. 

• Integration of Additional Pilot Data: The current evaluation relies on data 
from the Greek pilot. Moving forward, we will incorporate data from other 
pilots, particularly leveraging simulation models from IS5, to assess the 
generalizability and adaptability of the RL approach across different 
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building types, climate conditions, and energy market structures. This will 
support the validation of the methodology across diverse scenarios. 

• Modification of RL with Cost-Benefit Matrices: To enhance transparency 
and decision interpretability, we plan to integrate cost-benefit matrices into 
the RL framework. This will provide a structured way to quantify trade-offs 
between energy efficiency, cost savings, and thermal comfort deviation, 
ensuring that optimization objectives align with stakeholder priorities. 

• Utilization of Real-World Data: While the current study relies on simulated 
trajectories, future iterations will incorporate real-world operational data 
from pilot buildings. This transition to real data will refine the RL agent’s 
performance by capturing realistic variability in energy consumption, 
pricing fluctuations, and user preferences. It will also enable a more 
accurate assessment of practical implementation challenges. 

• Integration with Task 4.6: The next phase will also focus on integrating the 
proactive demand planning tool within the broader framework of Task 4.6 
(Integrated B2G and G2B Services Layer), ensuring alignment with the 
overarching energy management strategies. 

These advancements will further strengthen the proactive demand planning 
methodology, making it more robust, adaptive, and suitable for real-world 
deployment. 

3.5. Continuous Energy Performance Management (IS10) 

3.5.1. Continuous Energy Performance Management (IS10a) 

Modern buildings consume a significant portion of global energy, with heating, 
ventilation, and air conditioning (HVAC) systems being among the primary 
contributors. Achieving an optimal balance between energy efficiency, user 
comfort, and operational convenience remains a challenge due to the dynamic 
nature of building environments. Factors such as fluctuating occupancy patterns, 
external weather conditions, and varying user preferences make traditional rule-
based or model-based control strategies less effective in real-world settings. To 
address these limitations, advanced control techniques that can adapt and 
optimize energy performance in real-time are essential. 
 
The Continuous Energy Performance Manager Service (IS10) is designed to 
enhance building operations by implementing data-driven control strategies that 
optimize energy consumption while ensuring occupant comfort. By leveraging 
black-box policy optimization, the system learns from historical and real-time data 
to make intelligent control decisions without requiring an explicit physical model 
of the building. This approach enables a more flexible and scalable solution that 
can be deployed across diverse building types and configurations. Through 
automated adaptation, the system can continuously improve performance, 
reducing energy waste and operational costs while maintaining a high level of 
indoor environmental quality. 
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3.5.1.1. Objectives 

The main objectives of IS10.a within the EVELIXIA context are: 
• Optimizing building operations by implementing intelligent control 

strategies that enhance energy efficiency while maintaining user comfort. 
• Employing black-box policy optimization to enable adaptive and self-

learning control, reducing reliance on explicit physical models and 
improving scalability across diverse buildings. 

• Minimizing energy consumption and operational costs by dynamically 
adjusting system settings in response to real-time conditions and external 
factors such as occupancy and weather variations. 

• Integrating data-driven decision-making by leveraging real-time sensor 
data and historical trends to continuously refine control strategies and 
improve system performance. 

• Supporting renewable energy integration by aligning energy consumption 
with the availability of on-site and grid-supplied renewable sources, 
maximizing self-consumption and reducing grid dependency. 

These objectives aim to establish a proactive, self-adaptive, and cost-effective 
energy management service that ensures efficiency, comfort, and sustainability 
while reducing operational complexity in building systems. 

3.5.1.2. Methodology 

The Continuous Energy Performance Manager Service (IS10.a) utilizes a Black-Box 
Model Predictive Control (MPC) framework to optimize building system 
operations while balancing energy efficiency, user comfort, and convenience. 
Instead of relying on explicit physics-based models, IS10 employs a neural 
network-based system model trained on historical and real-time building data to 
predict future states, such as indoor temperature and energy consumption. These 
predictions allow the system to optimize control actions over a finite prediction 
horizon, ensuring proactive and adaptive decision-making. This enables an 
adaptive control strategy that accounts for uncertainties and complex building 
dynamics without requiring a manually developed mathematical model.  
 
At each time step, the MPC controller collects the current state estimate from an 
estimator, which filters sensor measurements and handles missing data. The 
neural network model then forecasts the system’s evolution based on the applied 
control inputs and external disturbances (e.g., weather conditions, occupancy). An 
optimization solver computes the optimal sequence of control actions while 
respecting system constraints, such as comfort limits and actuator restrictions. 
Only the first control action is applied, and the process repeats in a receding 
horizon fashion. This approach enables real-time adjustments to varying 
conditions, ensuring energy-efficient building operations while maintaining user-
defined comfort preferences. 
More specifically, the methodology follows a receding horizon control approach, 
as illustrated in Figure 61, where: 

• Sensor measurements from the building (e.g., indoor temperature, energy 
consumption) are processed by an estimator to remove noise and handle 
missing data. 

• The neural network model predicts the next system state based on current 
conditions, disturbances (e.g., weather, occupancy), and control inputs: 
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𝒙̂𝑘+1 = 𝑓𝜃(𝒙̂𝑘 , 𝒖𝑘 , 𝒅𝑘) 
where 𝒙̂𝑘is the estimated state, 𝒖𝑘is the control action, 𝒅𝑘 represents the external 
disturbances like weather conditions and occupancy profiles and 𝑓𝜃 is the neural 
network trained on historical and real-time data. 

• An optimization solver determines the best sequence of control inputs by 
minimizing a cost function while satisfying system constraints: 

min
𝑢𝑜,⋯,𝑢𝑁−1

∑ℓ(𝒙𝑘 , 𝒖𝑘)

𝑁−1

𝑘=0

+ ℓ𝑁(𝒙𝑁) 

subject to: 
𝒙𝑚𝑖𝑛 ≤ 𝒙𝑘 ≤ 𝒙𝑚𝑎𝑥, 𝒖𝑚𝑖𝑛 ≤ 𝒖𝑘 ≤ 𝒖𝑚𝑎𝑥 

ensuring that states and control actions remain within safe operating limits. 
• Only the first control action 𝑢0is applied to the building, and the process 

repeats at the next time step, shifting the horizon forward. 
This closed-loop control strategy allows IS10.a to dynamically adjust to variations 
in building conditions, occupancy patterns, and external disturbances, achieving 
efficient, real-time energy management. Figure 61visually represents this process, 
showing how the estimator, neural network model, optimization solver, and 
building system interact to form a continuous control loop. 

 
Figure 61. Black-Box MPC framework for building energy management. 

The system continuously optimizes control inputs based on real-time sensor data, 
an estimator that refines state measurements, and a neural network model that 
predicts future states. An optimization solver determines the best control actions 
while respecting operational constraints, ensuring energy efficiency and user 
comfort. 
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3.5.1.3. Evaluation & Results 

In order to evaluate the adopted approach, we use the hydronic heat pump 
model from BOPTEST environment. This testbed is a building with 192m2 and 
includes a 15-kW air-to-water modulating heat pump which extracts energy from 
the ambient air to supply heat to the floor heating system The control signal is the 
heat pump modulation signal with range [0,1] dictating how much heating power 
the system provides. The cost function to be minimized becomes: 

min
𝑢𝑜,⋯,𝑢𝑁−1

∑(𝑊1 ∙ 𝑠𝑘
2 +𝑊2 ∙ 𝑃𝑘 ∙ 𝑝𝑟𝑘 +𝑊3 ∙ ∆𝑢

2)

𝑁−1

𝑘=0

 

Where 𝑠𝑘 is the temperature deviation from the defined operational bounds, 𝑃𝑘is 
the electricity consumption, 𝑝𝑟𝑘 is the electricity price and 𝑊1,𝑊2,𝑊3 are scalar 
weight factors. Note that this formulation encapsulates monetary cost, while a 
realization that prompts least energy usage could be 𝑊2 ∙ 𝑢𝑘 excluding the direct 
connection with energy price. The last term penalizes oscillations on the change 
of control signal. Two streams of scenarios have been applied: the first represents 
a family setting with the corresponding occupancy profiles, while the second 
corresponds to an office work setting, as follows: 
 

𝑇𝑓𝑎𝑚𝑖𝑙𝑦(𝑡) =

{
 
 

 
 
21°𝐶 − 23°𝐶, 𝑖𝑓 7: 00 ≤ 𝑡 < 9: 00 (𝑊𝑒𝑒𝑘𝑑𝑎𝑦)
18°𝐶 − 20°𝐶, 𝑖𝑓 9: 00 ≤ 𝑡 < 13: 00 (𝑊𝑒𝑒𝑘𝑑𝑎𝑦)
21°𝐶 − 23°𝐶, 𝑖𝑓 13: 00 ≤ 𝑡 < 22: 00 (𝑊𝑒𝑒𝑘𝑑𝑎𝑦)
17°𝐶 − 20°𝐶, 𝑖𝑓 22: 00 ≤ 𝑡 < 7: 00 (𝑊𝑒𝑒𝑘𝑑𝑎𝑦)
21°𝐶 − 23°𝐶, 𝑖𝑓 7: 00 ≤ 𝑡 < 22: 00 (𝑊𝑒𝑒𝑘𝑒𝑛𝑑)
17°𝐶 − 20°𝐶, 𝑖𝑓 22: 00 ≤ 𝑡 < 7: 00 (𝑊𝑒𝑒𝑘𝑒𝑛𝑑)

 

 

𝑇𝑜𝑓𝑓𝑖𝑐𝑒(𝑡) = {

17°𝐶 − 20°𝐶, 𝑖𝑓 19: 00 ≤ 𝑡 < 7: 00 (𝑊𝑒𝑒𝑘𝑑𝑎𝑦)
21°𝐶 − 23°𝐶, 𝑖𝑓 7: 00 ≤ 𝑡 < 19: 00 (𝑊𝑒𝑒𝑘𝑑𝑎𝑦)
17°𝐶 − 20°𝐶, 𝑖𝑓 0: 00 ≤ 𝑡 < 24: 00 (𝑊𝑒𝑒𝑘𝑒𝑛𝑑)

 

To further encapsulate the trade-off between thermal comfort deviations and 
monetary cost, we introduce the Weighted Bounds Penalty (%), which represents 
the average deviation from the defined comfort bounds. This metric is computed 
as the mean of the Upper Bound Deviation Mean (%) and Lower Bound Deviation 
Mean (%), effectively summarizing the overall deviation from the preferred 
thermal comfort range. 
 
The Upper Bound Deviation Mean (%) quantifies how much, on average, the 
recommended energy consumption exceeds the upper flexibility limit set to 
ensure thermal comfort. Conversely, the Lower Bound Deviation Mean (%) 
measures the average deviation when the recommended energy consumption 
falls below the lower flexibility threshold, potentially leading to discomfort due to 
insufficient heating or cooling. Together, these two metrics provide insight into 
how well the control strategy maintains energy consumption within the 
predefined comfort range. 
 
A lower Weighted Bounds Penalty (%) indicates that the control strategy better 
adheres to the predefined comfort constraints, minimizing deviations from the 
acceptable limits. A higher value, on the other hand, suggests greater deviations, 
implying that the control actions may not fully respect occupant comfort 
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preferences. By incorporating this factor, the analysis provides a more 
interpretable assessment of the controllers’ ability to balance cost savings with 
user comfort constraints. This allows for a more holistic evaluation of black-box 
MPC configurations across different prediction horizons and dominant trade-off 
objectives. The results indicate that configurations prioritizing comfort 
preservation generally exhibit lower Weighted Bounds Penalty (%), whereas those 
focused on monetary cost reduction tend to have higher deviations, reflecting the 
inherent trade-offs in optimizing energy consumption. 
Table 4 and Table 5 present the comparative performance of Black-Box Model 
Predictive Control (MPC) and PID controllers under family and office occupancy 
profiles, respectively, for a 7-day testing period. The results showcase the trade-
offs between total monetary cost (€/kWh), upper and lower bound deviations, and 
the weighted bounds penalty across different prediction horizons and 
optimization objectives. 

Table 4. Performance comparison of Black-Box MPC and PID controllers under a 
family occupancy profile 

Controller Ν 

Dominant 
Objective in a 

trade-off 
setting 

Total 
Monetary 

Cost (€/kWh) 

Upper Bound 
Deviation 
Mean (%) 

Lower Bound 
Deviation 
Mean (%) 

Weighted 
Bounds 
Penalty 

(%) 

PID - - 56.21133461 1.546379334 0.377891052 0.962 

Black-box 
MPC 

12 
Monetary 

Cost 
42.3799411 0.42278056 0.860304355 0.642 

12 
Comfort 

Preservation 
43.85850917 0.465731612 0.295795434 0.381 

24 
Monetary 

Cost 
42.8216597 0.899254069 1.203720508 1.05 

24 
Comfort 

Preservation 
44.63397034 1.036208632 0.317788169 0.674 

48 
Monetary 

Cost 
42.86603132 0.599015822 1.388741299 0.995 

 

  



 

EVELIXIA – D4.1 Autonomous Building Digital Twins                                                   85 
 

Table 5. Performance comparison of Black-Box MPC and PID controllers under an 
office occupancy profile 

Controller Ν 

Dominant 
Objective in a 

trade-off 
setting 

Total 
Monetary 

Cost (€/kWh) 

Upper Bound 
Deviation 
Mean (%) 

Lower Bound 
Deviation 
Mean (%) 

Weighted 
Bounds 
Penalty 

(%) 

PID - - 57.03238467 1.373900464 0.259814341 0.817 

Black-box 
MPC 

12 
Monetary 

Cost 
35.14754978 0.172165415 1.939852886 1.06 

12 
Comfort 

Preservation 
38.88933668 0.201474917 0.402354007 0.302 

24 
Monetary 

Cost 
37.98396665 0.295603152 0.630709386 0.464 

24 
Comfort 

Preservation 
41.63770401 0.486369459 0.130668254 0.309 

48 
Monetary 

Cost 
40.42509569 0.564285574 0.304510056 0.435 

 
The PID controller, included as a baseline, demonstrates higher total monetary 
costs compared to all Black-Box MPC configurations. The Black-Box MPC 
controller, evaluated under different prediction horizons (12, 24, and 48 steps with 
each step representing a 15-minute interval) and dominant objectives (monetary 
cost vs. comfort preservation), consistently outperforms PID in cost reduction 
while maintaining varying degrees of adherence to thermal comfort constraints. 
The dominant objective in a trade-off setting illustrates whether a particular 
configuration prioritizes monetary cost minimization or comfort preservation. As 
expected, configurations prioritizing monetary cost reduction tend to exhibit 
higher deviations from the comfort bounds, leading to an increased Weighted 
Bounds Penalty (%). Conversely, configurations focused on comfort preservation 
result in lower deviations but at the expense of slightly higher energy costs. 
 
A comparison between Table 4 and Table 5 highlights the impact of different 
occupancy profiles on the control strategies. The family setting (Table 4) exhibits 
greater variability in deviation patterns due to more dynamic occupancy and 
energy demand fluctuations, whereas the office setting (Table 5) shows relatively 
lower deviations, likely due to more predictable and structured occupancy 
schedules. Overall, the results emphasize that the choice of prediction horizon 
and dominant objective significantly influences the trade-offs in energy cost and 
thermal comfort. The introduction of the Weighted Bounds Penalty (%) provides 
an abstract metric to quantify the comfort deviations, aiding in the assessment of 
optimal control strategies for different building usage scenarios. 
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The results presented in Figure 62 and Figure 63 compare the performance of 
PID and Black-Box MPC controllers under two different occupancy settings: 
family and office environments. Both cases utilize a 12-step prediction horizon (3 
hours) with a configuration that prioritizes comfort preservation. In both 
scenarios, the Black-Box MPC demonstrates improved temperature regulation, 
maintaining indoor temperatures closer to the predefined comfort bounds while 
adapting control actions dynamically. The PID controller, in contrast, exhibits 
slower responsiveness and more deviation from the desired comfort range. 
 
The heat pump control signals reveal that the MPC-based approach leverages 
predictive capabilities to adjust energy consumption proactively, avoiding 
unnecessary fluctuations and reducing control effort. The difference is particularly 
noticeable during transitions between heating cycles, where the MPC controller 
provides smoother adjustments compared to the more reactive nature of PID. An 
exception is observed during 5th day in the office case where the MPC approach 
produced high oscillation operation to thermal comfort bounds. In the family 
occupancy profile (Figure 62), variations in indoor temperature are more dynamic 
due to irregular occupancy patterns, leading to increased demand flexibility. The 
MPC controller effectively utilizes the available flexibility, reducing sharp 
deviations from comfort bounds. In the office occupancy profile (Figure 63), the 
environment exhibits more predictable energy demand. Here, the MPC approach 
maintains a stable and efficient control strategy, particularly during periods of 
lower occupancy, leading to smoother operation with fewer control variations. 
Overall, these results highlight the advantages of Black-Box MPC in balancing 
comfort preservation with energy efficiency, making it a more effective strategy 
than traditional PID control in dynamic building environments. 
 

 
Figure 62. Comparison of PID {light red} and Black-Box MPC (12-step horizon, Comfort 
Preservation) {light blue}under a family occupancy profile.  

The subplots present indoor temperature tracking, heat pump control signals, 
solar radiation, and ambient temperature variations. The MPC controller exhibits 
improved adherence to thermal comfort bounds while optimizing control effort. 
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Figure 63. Comparison of PID {light red} and Black-Box MPC (12-step horizon, Comfort 
Preservation) {light blue} under an office occupancy profile.  

The subplots depict indoor temperature tracking, control signals, solar radiation, 
and ambient temperature trends. The MPC controller shows improved control 
precision and responsiveness to external conditions compared to PID. 

3.5.1.4. Next Steps 

Future work will focus on enhancing the Black-Box MPC approach by refining its 
optimization framework and expanding its adaptability to different building 
conditions. A key direction is the integration of a simulation engine that emulates 
the behavior of pilot cases (from IS5), allowing for more representative training 
and testing environments instead of relying on publicly available testbeds. This 
will improve the controller’s ability to generalize across different occupancy and 
energy demand scenarios while also to adapt on the actual pilot cases. 
 
Additionally, the incorporation of real-world data from pilot buildings will further 
validate the model’s performance under practical conditions, capturing dynamic 
interactions between occupancy patterns, HVAC operations, and external 
disturbances. The approach will also be aligned with Task 4.6, ensuring that the 
control strategy integrates seamlessly into the broader energy management 
framework. 

3.5.2. HVAC Management System (IS10b) 

The current innovative solution so-called IS10b is an original tool developed by 
CEA through the EVELIXIA project. Buildings can offer a degree of flexibility to 
connected energy networks (district heating and electric grid), such as load 
shifting, load shedding, thanks to their mass inertia, their RES capacity of 
production and the occupant’s tolerance in term of comfort.IS10b developed by 
CEA dispatches the building's heating and air-conditioning power over the next 
two days, minimizing energy costs while respecting the thermal comfort of 
occupants, taking into account the evolution of energy prices, weather conditions 
and building activity. 
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3.5.2.1. Objectives 

As part of the EVELIXIA project, CEA promotes a solution for managing the 
flexibilities of buildings and their heating and cooling systems over a few days 
ahead, depending on the specific use case to be run. This optimization tool, so 
called energy management system (EMS), requires an objective function to be 
implemented by users according to their own point of interest and the systems’ 
features. The objective function may be, for example, to reduce the energy 
consumption as much as possible, to increase the share of Renewable Energy 
Sources (RES) in the necessary energy consumption or even, to reach the lowest 
energy cost over the period. The tool is built to compute the optimized trajectory 
under the constraint of ensuring the thermal comfort of the occupants. This tool 
also enables users to track the energy flow trajectories defined the day before by 
another optimization solution (such as IS9), if it exists, under the condition that it 
is fed with the optimized time series to be followed. The solution proposed by the 
CEA does not involve controlling the systems. It will produce outputs in the form 
of time series in .txt or .csg format and transmit them to the EVELIXIA platform. 
These results must be retrieved from the platform somehow and transformed into 
actions by operators in the field. 

3.5.2.2. Methodology 

The optimization core of the IS10b solution is implemented in a GAMS 
environment. It is based on a Mixed Integer Linear Programing  (MILP ) approach 
to ensure the optimum energy distribution of the HVAC and loads systems. CEA is 
used to developing and fine-tuning projects in this environment according to the 
wishes of its customers or partners. The necessary bricks around the optimization 
tool block were programmed in Matlab, specifically, the bricks dedicated to 
preparing the input data and to managing the dataflow. 
 
The workflow in the IS10b solution is as follows: 

 
Figure 64.IS10b workflow 
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The IS10b solution relies on an electrical analogy RC-type model to simulate the 
thermal behavior of the buildings considered. The RC-type building model is 
based on the repealed standard ISO13790:2008, including 5 resistances and 1 
capacity and several temperatures nodes e, sup, air, s, m. The temperature nodes 
respectively denote the external temperature, the supply air temperature sup that 
could be different of e in case of energy recovering systems between fresh and 
exhaust air, indoor air temperature, star node temperature s corresponding to 
the delta to star conversion and effective mass temperature m representing the 
mean temperature of the building structure. 
 

 
Figure 65. RC network heat flows (from abrogated std. ISO13790:2008) 

 
In view of the RC building model, the IS10b solution also entails a program, as a 
second brick, dedicated to identifying the parameters Hve, Htr,w, Htr,em, Htr,is, Htr,ms, Cm, 
Am. The goal is to match the outputs of the building model to the measured air 
temperatures, considering the necessary measured inputs such as sol, int, HC,nd 
from which ia, st, mare calculated. These six latter are the power flows 
representing respectively solar radiations on the total exposed external surfaces, 
internal heat gains distributed inside the building, heating/cooling power 
supplied to the building and the inputs deduced therefrom featuring the power 
flows transmitted to the indoor air temperature node, the star temperature node 
and the structure temperature node.  
 
CEA designed the parameter identification tool based on the PSO (Particle Swarm 
Optimization) methodology that is powerful for estimating the optimum target 
although it does require some precaution in its handling and in parameter 
bounding. This calibration process of the model will be repeated as often as 
necessary to take into account the variations of building thermal behavior along 
the seasons and activities. Afterwards, the so-calibrated parameters are set into 
the optimization tool block. The EMS contains four different models that can be 
extended according to the scope of the use case and the assets considered (e.g. 
BESS, solar PV, loads): 
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• Building system model grouping the buildings under consideration 
into different groups and their relationship with the heat pumps 
involved (heating and cooling systems). This model ensures to comply 
with the energy matching balance at each building node and at each 
heat pumps node 

• Building model based on repealed ISO13790:2008. The building model 
implemented in the optimization block calculates the power flow to 
ensure the air temperature target and thermal comfort. 

• Building control model. This model deals with the strategy to control 
thermal comfort: manual or adaptive. It switches alternatively and 
automatically from one mode to the other. 

• Heat pump model. The model can simulate any other types of heating 
or cooling systems as it is formulated on an energy efficiency ratio. It 
manages minimum and maximum power limitations. It can also 
consider limitations at the start-up and shut-down phases and 
consider fixed ramps to emulate the dynamic behavior of power 
variations. At this stage, there is no calibration of the heat pumps 
model, since heating and cooling systems are assumed to be well 
documented and maintained. That might be done in further 
developments. 

According to what has already been mentioned, IS10b tool requires many inputs, 
static data, historical data, and dynamic data. 

• Static data are gathering the information about buildings structure 
and thermal features, sizes including openings size and exposure, the 
power rate of heating, cooling, energy recovering systems and RES 
involved as well as the indoor air temperature set point and the 
ventilation air flow rate profile. 

• Historical data supports the process of identifying the parameters of 
the building model. For instance, to identify the building’s thermal 
characteristics, the RC-type model needs to be fed with solar radiation 
hitting the building’s external surfaces at each time step. This 
recalculated data is expected from IS5 “Building Energy Modelling and 
Simulation”. 

• Dynamic data are used to feed the optimization model with forecasts 
and real-time information (indoor air temperature, energy market 
prices, air flow rate, weather, occupancy, load profiles, RES production 
if any, availability of HVAC systems). 

IS10b optimization tool deals with the following flexibilities in terms of comfort: 
• Indoor air temperature inferior gap profile. 

• Indoor air temperature superior gap profile. 

• Indoor air temperature set points depending on the comfort mode to 
be calculated and then applied (manual or adaptive). 

Moreover, the comfort flexibility can be constrained by two additional parameters 
related to the variation limits of the air temperature set point: 

• Indoor air temperature ramp up max. 
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• Indoor air temperature ramp down max. 

It is relevant to notice that the building model can deal with the indoor air 
temperature as well as the indoor operative temperature, both at the end of each 
time step or for the mean value over each time step. The operative temperature is 
defined as the weighted average of indoor air temperature and radiative 
temperature from the inside walls (see the repealed ISO13790:2008). The two 
different weights to calculate the operative temperature are fine-tunable. For its 
part, the so-called HeatPumpMdl1 model is based on a thermal efficiency ratio 
approach. It encompasses the parameters as follows: 

• Thermal power min: this is the lowest thermal power provided by the 
system. 

• Thermal power max: this is the uppers thermal power provided by the 
system. 

• Thermal start power max: this is the uppers thermal power that can be 
provided by the system at the starting stage. 

• Thermal stop power max: this is the uppers thermal power allowing 
the system to shut down. 

HeatPumpMddl1 model is also considering the thermal system inertia and 
dynamic with two additional parameters to be filled in: 

• Thermal power increasing max. 

• Thermal power decreasing max. 

The heat pump model also emulates the type of emitters inside the building by 
considering this coefficient representing the convective part on total thermal 
exchanges from emitters (convective + radiative emissions).A run of IS10b is 
stepping as follows: 

• Receiving the request from the building’s owner, operator or user 
through the EVELIXIA platform. 

• Getting the static and historical data from the EVELIXIA platform. 

• Setting the parameters as regards the building model, building 
control model, thermal system. 

• Identifying the thermal features of the buildings under consideration. 

• Running the optimization computation. 

• Collecting output time-series data on thermal and electrical power 
consumption for integration into the EVELIXIA platform and field 
application. 

Each specific use case and asset requires CEA to discuss the objective function 
with the end-user. 

3.5.2.3. Evaluation & Results 

The IS10b test illustrated in the current section is not linked to any pilot site in the 
EVELIXIA project but it does represent a use case based on minimising the energy 
cost associated with the heating and air conditioning systems. This objective is 
well representing part of what EVELIXIA is striving to test and demonstrate. 
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CEA displays the IS10b results for a system of two buildings,  with floor areas of 100 
and 200 m²,respectively, building structure=medium and heavy according to the 
abrogated ISO13790:2008 (respective specific heat cm = 165 and 260 kJ/m²) and 
two heating systems. The building #1 is heated by heating system #1 and the 
building #2 is heated by both heating systems #1 and 2. Each heating system has 
a power rating of 10 kW. 

 
Figure 66. Demo’s relationships between the buildings and heat pumps 

 
Buildings features are the followings (all definitions in accordance with 
ISO13790:2008): 
 
BuildingModel3_p_Af      = 100 * ones(1, Nbr_BuildingModel3_entities); % in m² 
BuildingModel3_p_Af(1,2) = 200; % in m² 
BuildingModel3_p_Atot    = 4.5*BuildingModel3_Params.BuildingModel3_p_Af; 
BuildingModel3_p_Am      = 2.5 * BuildingModel3_p_Af; % Medium 
BuildingModel3_p_Am(1,2) = 3 * BuildingModel3_p_Af(1,2); % Heavy 
BuildingModel3_p_cm      = ones(Nbr_BuildingModel3_entities, N_TimeStep); % J/m² 
BuildingModel3_p_cm(1,:) = (165000 / Wh_to_Joules); % Medium building structure 
BuildingModel3_p_cm(2,:) = (260000 / Wh_to_Joules); % Heavy building structure 
BuildingModel3_p_his   = 3.45 * ones(Nbr_BuildingModel3_entities, N_TimeStep);% W 
BuildingModel3_p_hms   = 9.10 * ones(Nbr_BuildingModel3_entities, N_TimeStep);% W 
BuildingModel3_p_H_em  =   90 * ones(Nbr_BuildingModel3_entities, N_TimeStep);% W 
BuildingModel3_p_H_ve  =  100 * ones(Nbr_BuildingModel3_entities, N_TimeStep);% W 
BuildingModel3_p_H_w   =  108 * ones(Nbr_BuildingModel3_entities, N_TimeStep);% W  
 
In this experience, the last seven parameters have been chosen arbitrarily, but in 
the real performance of IS10b they must be identified thanks to the PSO 
methodology mentioned in the previous section. The weather time series comes 
from meteonorm database: LeHavre (France GPS cord.: 49.5 / 0.1).In this 
demonstration, solar radiations are those received at this GPS coordinates, on the 
level of ground without any calculation of the total radiations on each external 
walls and roof. It has been decided to rely on the building VE from IESRD to get 
this data for each time step. It will be applied in the coming month for the Greek 
and French pilot sites. Using the IS10b implies a previous stage to calculate the 
solar radiation received by the various building’s areas depending on their 
orientation (see in section 3.5.2). 
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The first day of test horizon time is on December 21, 2050. 
FirstDay_of_Horizon  = 21; 
Month_of_Horizon     = 12; 
Year_of_Data         = 2050;  
 
1 hour is the time step, implying 72 steps time series to be handled and managed. 
 
The internal heat gains are assumed to be known and fixed to: 200 W in each 
building for the demo. 
 
For this test, the convective upon total emission coefficient is fixed as follows: 
BuildingModel3_p_C1_ConvRadia= 0.5 * ones(Nbr_BuildingModel3_entities, N_TimeStep);  
 
And the operative temperature is calculated respectively from the indoor air 
temperature and the internal wall surface temperature with the following 
weights: 

BuildingModel3_p_C1_Theta_op = 0.3 * ones(Nbr_BuildingModel3_entities, N_TimeStep); 
BuildingModel3_p_C2_Theta_op = 0.7 * ones(Nbr_BuildingModel3_entities, N_TimeStep);  
 
The heating systems have been customized with these parameters in mind: 

HeatPumpMdl1_p_COP_Heat        = 4*ones(Nbr_HeatPumpMdl1_entities, N_TimeStep);% Watt 
HeatPumpMdl1_p_Pac_Heat_min       = 500*ones(1, Nbr_HeatPumpMdl1_entities);  % Watt 
HeatPumpMdl1_p_Pac_Heat_max       = 2500*ones(1, Nbr_HeatPumpMdl1_entities); % Watt 
HeatPumpMdl1_p_Pac_Heat_Start_max = 2500*ones(1, Nbr_HeatPumpMdl1_entities); % Watt 
HeatPumpMdl1_p_Pac_Heat_Stop_max  = 2500*ones(1, Nbr_HeatPumpMdl1_entities); % Watt  
 
These last two parameters are set at the same level as the power rating of the 
heating system. That means they have no impact on the thermal behaviour of the 
heat pump system during the optimization test. However, they can be between 
the Pac_Heat_min and the Pac_Heat_max, as a function of the considered heating 
system. 
 
A horizon period of three days have been selected from the December 21, and the 
indoor air temperature set point is distributed as follows: 
The temperature set points are corresponding to the indoor operative 
temperature aforementioned in section 3.5.2. 
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Figure 67.Operative temperature set point and limitations 

 over the time horizon for the demo 
 
The operative temperature manual set points were constrained between these 
two bounds: 
 
BuildMod3Ctrl1_p_Theta_Manual_SetPoint_UB = 21 * ones(Nbr_BuildMod3Ctrl1_set, 
Nbr_Day_of_Horizon);   % Borne sup Consigneen mode manuel in Celsius 
 
BuildMod3Ctrl1_p_Theta_Manual_SetPoint_LB = 20 * ones(Nbr_BuildMod3Ctrl1_set, 
Nbr_Day_of_Horizon);   % Borne inf Consigneen mode manuel in Celsius  
 
For the current test, the initial indoor air temperature inside the two buildings is 
assumed to be 18 degrees Celsius when the primary indoor wall surface 
temperature is admitted to be 18.6 degrees Celsius. 
In case of adaptive control mode, the temperature adaptive set points are 
compelled into the range of +2/-3 degrees Celsius around the gliding daily 
average temperature (see calculation in the RE2020 French regulation). Here it is 
relevant to mention that the gliding daily average temperature is calculated from 
the last height days. 
 
As for the objective function, CEA programmed a cost function including the 
energy consumption over the period of three days in addition to the cost in term 
of discomfort represented by the gap between actual temperature and the set 
point. The electric energy prices in €/kWh and the prices of discomfort in €/K at 
are defined at each time step. For example, CEA has considered: 

• 0 €/K when the actual temperature deviation is retained inside the 
tolerated range: between the upper and the lower bounds. 

• 150 €/K when the temperature deviation is outside this admitted 
range. 

For sure, the energy prices and comfort tolerances have to be defined with the 
support of the IS10b users (building owners, operators, occupants). 
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For the current demonstration of IS10b, CEA defined arbitrarily the electric energy 
prices: 
 
BuildMod3Ctrl1_p_Theta_Manual_SetPoint_UB = 21 * ones(Nbr_BuildMod3Ctrl1_set, 
Nbr_Day_of_Horizon);   % Borne sup Consigneen mode manuel in Celsius 
 
BuildMod3Ctrl1_p_Theta_Manual_SetPoint_LB = 20 * ones(Nbr_BuildMod3Ctrl1_set, 
Nbr_Day_of_Horizon);   % Borne inf Consigneen mode manuel in Celsius 
 
% Prix achatelec : 
Price_Elec                 = 0.20 * 1e-3 * ones(1, N_TimeStep); % 0.2 €/kWh 
% 
Period_LowPrice_Elec       = [Periode3, Periode4, Periode6, Periode7, Periode9]; 
% 
Price_Elec(Period_LowPrice_Elec) = 0.1 * 1e-3; % 0.1 €/kWh Low charge onto the grid  
 
The following equations define the objective function to be tested: 
 
eq_Cost_Elec(HeatPumpMdl1_set, k) 
.. 
v_Cost_Elec(HeatPumpMdl1_set, k) 
    =e= 
        - p_Price_Elec(k) * HeatPumpMdl1_v_Pac(HeatPumpMdl1_set, k) * TimeStep(k) 
; 
* 
eq_Obj_Cost 
.. 
obj_Cost 
 =e= 
sum( (BuildMod3Ctrl1_set, k) , BuildMod3Ctrl1_v_Theta_CostGap (BuildMod3Ctrl1_set, 
k) ) 
    + 
sum( (HeatPumpMdl1_set,   k) , v_Cost_Elec                    (HeatPumpMdl1_set,   k) )  
 
The IS10b is up-and-running and the optimisation test is complete: 
 
------------------ Status returned via gdx file -------------------- 
Solver Status : 1  -> must be equal to 1 for NORMAL COMPLETION 
Model Status  : 8  -> see here : Model Status in Gams documentation 
-------------------------------------------------------------------- 
Problem solved : in 36.042 seconds  
 
The figures here after present the results of this IS10b test. 
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Figure 68 shows the indoor operative temperatures (end and average of time 
step) for the two buildings over the three-day horizon period. The operative 
temperatures are within the tolerance range. 
 

 

 
Figure 68. Operative temperature evolution after optimization by EMS 
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In addition, Figure 69 illustrates the thermal power distribution from heating 
systems to the supplied buildings. 
They also show the energy needs of the two buildings over the three-day horizon. 
As expected, building #2, which is larger and heavier than the building #1, 
anticipates the heating phases after the first day and the target temperature: 20 
degrees Celsius. It requires higher peak energy when the energy prices are low, 
and lower thermal consumption at the end of days when electricity prices are still 
high. 
 

 

 
Figure 69. Distribution of heat power to buildings after optimization by EMS 
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The IS10b also calculates the electricity consumptions of the two heating systems 
under consideration to control the heating space air conditioning of the buildings. 
The optimized control of the heating systems discloses the priority of the heating 
system #1 when the heating system #2 is activated mainly to overcome the 
energy peaks required to heat the building #2. 
 

 

 
Figure 70.Power consumption of heat pumps for the demo 

This section is intended to showcase the role of IS10b and the opportunity offered. 
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3.5.2.4. Next Steps 

The ongoing task is to push this work on the CEA mOreGAMS simulation 
environment and to connect it to the EVELIXIA platform. 
The IS10b can both be run to optimise the energy consumptions for space heating 
and air-conditioning or to follow intra-day the trajectory drawn the days before 
(from IS9 if any). Furthermore, it can also involve different loads (Hot water tanks, 
batteries, other loads related to indoor activities) or RES energy generation taking 
into account the variation of electricity prices induced. 
CEA is now looking forward to connecting the IS10b solution to the interested 
pilot sites through the EVELIXIA platform. The input data are still required from 
other solutions (e.g. IS1, IS2, IS4, IS5, IS9, IS18). 

3.5.3. Building Aggregator Service, BAS (IS10c) 

The Danish pilot site, located in Aabenraa, Southern Denmark, is part of the 
Kolstrup Housing Association. This pilot site is the demo site for developing and 
testing the innovative solution Building Aggregator Service, BAS. The pilot focuses 
on typical Danish housing association buildings from the 1970s, which were 
renovated in 2015 with photovoltaic (PV) panels, batteries and EV charging 
stations. The BAS enables cross sector coupling between electricity and district 
heating and leveraging the flexibility in heating and hot water production in an 
apartment building block. 

3.5.3.1. Objectives 

The BAS is the tool to be developed to fulfil the following objectives:  
• Maximize local consumption of electricity generated from local PV.  
• Optimize local electricity usage based on variable local tariffs and electricity 

prices.  
• Utilize PV electricity to power an electric heater installed in a domestic hot 

water (DHW) tank.  
• Test concepts and business cases for exporting energy to the district 

heating (DH) grid.  
• Collaborate with the Distribution System Operator (DSO) to explore 

optimized grid load management and reduce grid bottlenecks.  
• Evaluate the potential for delivering balancing services to Balance 

Responsible Parties (BRPs) and the Transmission System Operator (TSO).  
In Denmark the TSO Energinet is currently procuring balancing services from 
large power plants and aggregated combined heat and power plants. The TSO 
and DSOs are also trying to establish a market for grid stability. However, these 
services are predominantly provided major players, with no local models available 
for community-level aggregators. The BAS is a tool where energy flows can be 
controlled and optimized according to price signals and relevant constraints. 
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3.5.3.2. Methodology 

The following work break-down has been established to develop and test the BAS: 
• Retrofit of Evelixia components on Pilot site 
• Setup device connection, data collection, control and management 
• Develop API support 
• Create Energy forecast 
• Create flexibility forecast 
• Create optimizer, define constraints 
• Develop tenant app  
• Develop operation GUI  
• Develop watchdog 

3.5.3.3. Evaluation and Results 

In the following section the various steps in the above work breakdown will be 
further elaborated and the first results listed.  
 
There are 2 use cases defined for the Danish Pilot Site 

Table 6: Danish Pilot Site UCs 

ID Use Case Description 

UC-DK#1 Electricity Optimization 
on Building Level 

Optimized operation of inverter, battery, 
and possibly consuming assets, to minimize 
cost of electricity. 

UC-DK#2 Optimization of District 
Heating Consumption 
and Production 

Optimized operation of district heating 
assets, including conversion of surplus 
electricity to energy for district heating 
network. 

 
The following description is mainly focusing on Use Case 1, UC-DK#1 as this will be 
the first to be implemented. 
 
Re: Retrofit of Evelixia components on Pilot site 
Both technique room and apartment upgrades are planned. This is part of the 
pilot site Denmark setup and detailed described in EVELIXIA’sD5.3 (Pilot 
Implementation Planning and Preparations). 
 
Re: Setup device connection, data collection, control and management 
Evelixia pilot site operation is planned to use the Neogrid platform framework 
with the following architecture: 
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 Figure 71. Neogrid platform framework 

The main product running on Neogrids platform today is PreHEAT, a monitoring 
and control solution for energy installations in buildings. EVELIXIA plans to use 
the same connection between gateway and server as PreHEAT and this is shown 
below: 

 
 Figure 72. Connection between gateway and server 

Re: Develop API support 
Data on the cloud can be accessed by authorized users via an open web API 
based upon JSON. This API allows the following: 

• Reading timeseries of measurements 
• Reading of local weather data 

Sending setpoints to the controller (Forwarded by the gateway to the BMS 
system) 
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The specification of this public API is available on https://neogrid-
technologies.gitlab.io/neogrid-api/. Moreover, a toolbox for Matlab and Python has 
been developed, which allows fast usage of the system without extensive prior 
knowledge of web API management, which can be found here: 
https://gitlab.com/neogrid-technologies-public. 
 
Re: Create Energy forecast 
Re: Create flexibility forecast 
Re: Create optimizer, define constraints 
 
Those steps here are part of the control for UC-DK#1. It can be further divided into 
activities before first control can be done, and then into daily and 5 minutes 
activities: 
 
Initial activities before first start 

• Setup data connection  
Connect electricity meters, PV battery and inverter 
Start collecting data 

• Create energy forecaster 
Use hourly electricity consumption for buildings 

• Define flexibility 
Operating range of battery 

• Define constraints 
Battery size 
Battery charging and de-charging speed 

 
Hourly activities 

• Read future price data 
Hourly spot price 

• Read battery status 
• Estimate hourly energy consumption for coming day 
• Optimize energy flow in- and out of battery 

 
Instant interrupt activities 

• Fallback operation of battery in case something unforeseen happens 
 
Re: Develop tenant app  
A tenant app will be developed and rolled out in the test buildings with features 
aimed at providing transparency, engaging tenants, and promoting efficient 
energy use. Here's a summary of the app's features:  

• Apartment Data:  
Displays electricity and heating consumption, enabling tenants to monitor 
their usage.  

• Price information & flexibility 
Provides information on electricity pricing and flexibility opportunities, 
helping tenants optimize their energy consumption.  

• Nudging for Efficient Behavior 
Encourages tenants to adjust their consumption during periods of low 
prices and tariffs, while supporting co-sector coupling (e.g., between district 
heating and electricity).  

https://neogrid-technologies.gitlab.io/neogrid-api/
https://neogrid-technologies.gitlab.io/neogrid-api/
https://gitlab.com/neogrid-technologies-public
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Re: Develop operation GUI  
This activity is to develop a GUI supporting the use case. The target is to support: 

• Show actual status 
• Show relevant KPIs 
• Turn on and off application 
• Adjust constraints 

 
Re: Develop watchdog 
This activity is to develop an independent program which checks the operation of 
the optimized operation. 

3.5.3.4. Next Steps 

For next steps (coming 6 months) the following activities are foreseen: 
 

• Finalize first iteration of UC-DK#1 
• Getting the retrofit installations on the two pilot sites done 
• Setting up full data collection for all elements including api support 
• Setting up specifications on tenant app and start development 
• Further developing of UC-DK#2 

 Defining optimization criteria and constraints 
 Clarify DSO involvement 
 Clarify TSO and balancing services involvement 
 Clarify if DH connection will be real or simulated 

• Securing data for other IS’s to be tested out on the Danish pilot plant 
 
The overall goal is to get as much functionality ready for heating season 
2025/2026 and secure the Danish pilot plant delivers data to other IS’s. IS10c is so 
far “only” intended to be used on the Danish Pilot plan. 
 

  



 

EVELIXIA – D4.1 Autonomous Building Digital Twins                                                   104 
 

4. CONCLUSIONS 

This deliverable has presented the first version of D4.1, consolidating the 
outcomes of Tasks 4.1 and 4.2 within the EVELIXIA project, with a particular focus 
on enhancing building-to-grid (B2G) interaction through digitalisation and 
advanced control strategies. The work achieved under these tasks lays the 
foundation for a new generation of intelligent, autonomous building systems 
capable of dynamic participation in energy markets while ensuring energy 
efficiency, indoor comfort, and operational resilience. 
Task 4.1 unfolded the development of building awareness and forecasting services 
formulating a comprehensive toolbox that integrates real-time sensory inputs, 
simulated data from the simulation environment engines, BIM-based static data 
and forecasting modules, to further enable accurate predictions of indoor air 
quality, energy demand, and flexibility potential, supporting both operational and 
strategic decision-making at the building level. 
Task 4.2 introduced the autonomous building decision support framework, which 
builds upon the simulation and awareness capabilities of Task 4.1. Through the 
integration of reinforcement learning, multi-timescale model predictive control, 
and decision models, this toolbox offers intelligent support for tasks like day-
added demand planning, real-time HVAC control and investment planning. This 
synergy enables compatibility with real time responses establishing the 
foundation for the next steps of integration with the real pilot cases, based on 
occupant needs, energy system dynamics and grid  conditions. 
Across both tasks, the development and preliminary implementation of 
Innovative Services IS1-IS7 and IS9-IS10 demonstrate the potential for cross-
cutting and reliable solutions addressing key operational vectors: air quality, 
predictive analysis, energy flexibility potential, energy consumption forecasting, 
simulation of building behaviours in control responses, investment planning and 
control. The methodologies and tools described herein are designed for scalability 
and adaptability across building types. Nevertheless, successful deployment 
requires addressing several technical and operational challenges, including 
robust data integration, interoperability between services, and stakeholder 
engagement to support adoption and ensure relevance to end-user priorities. 
Concluding, this deliverable serves as an important milestone in EVELIXIA’s 
pursuit of smart and resilient building and district systems. It brings together 
state-of-the-art digital twin technologies, forecasting models, and autonomous 
decision support systems to create a unified and flexible platform towards next 
generation building energy management. 
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6. ANNEXES 

6.1. IS6 Annex 

6.1.1. Detailed list of KPIs 

6.1.1.1. Lifetime Primary Energy Demand 

The Lifetime Primary Energy Demand (PED)is a vital environmental KPI that 

measures the total primary energy demand of a project throughout its entire 

lifecycle. This KPI quantifies the energy used from raw material extraction to the 

operational and maintenance phases of the building or district. It provides a 

comprehensive overview of a project’s total energy consumption and is essential 

for evaluating energy efficiency and identifying potential areas for energy savings. 

The total PED is derived from two primary sources: 

• Infrastructure (Product/Construction Stages) Energy Demand: This includes 

energy consumed during the production, transportation, and installation of 

building materials and components (Stage A of the component lifecycle). 

These energy requirements are considered embodied energy and are 

incurred when a component is installed for the first time. 

• Operational & Maintenance (Stage B Use Stage) Energy Demand: This 

captures the energy used during the building’s operational phase, such as 

for heating, cooling, lighting, and other energy-consuming activities. It also 

includes energy used for maintenance activities, including repair, 

replacement, and refurbishment of components. 

The Lifetime PED is critical for assessing a project’s long-term energy needs and 

efficiency. It helps stakeholders make informed decisions to optimize energy use, 

reduce reliance on non-renewable sources, and enhance overall sustainability. 

The Lifetime PED is calculated in four versions, which include the total and 

average annual demand for the whole building, and the total and annual average 

demand per m2 of useful building area. The basic equation for calculating the 

total building PE demand is:  

𝐿𝑃𝐸 = 𝐼𝑃𝐸 + ∑(𝑂𝑃𝐸
[𝑖]
)

𝑁

𝑖=1

 

Where: 
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𝐿𝑃𝐸 is the Lifetime PE Demand of the project; 

𝐼𝑃𝐸 is the Infrastructure (embodied) PE Demand; 

𝑂𝑃𝐸
[𝑖]  is the Operational PE demand of the building’s components in year i.  

 

As in the case of GWP, the equations for the per m2 and annual averages are given 

by: 

 

𝐿𝑃𝐸
𝑚2⁄ =

𝐿𝑃𝐸
(𝑈𝑠𝑒𝑓𝑢𝑙 𝑎𝑟𝑒𝑎)⁄  , 𝐿𝑃𝐸̅̅ ̅̅ ̅ =  

𝐿𝑃𝐸
𝑁⁄ , 𝑎𝑛𝑑 𝐿𝑃𝐸

𝑚2⁄
̅̅ ̅̅ ̅̅ ̅̅ ̅ =  

𝐿𝑃𝐸
𝑚2⁄

𝑁
⁄  

 
 
The Infrastructure (embodied) PE demand is defined as: 

 

𝑂𝑃𝐸
[𝑖]𝑖 = ∑ 𝐹𝐸𝑗

[𝑖]
∙  𝑃𝐸𝐹𝑓𝑢𝑒𝑙,𝑗

∀𝑗∈𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
+ 𝑂𝑃𝐸,𝑀𝑁,𝑗

[𝑖]  

 
Where: 

𝐹𝐸𝑗
[𝑖] is the Final Energy consumed by component in year, obtained from energy 

demand timeseries; 

𝑃𝐸𝐹𝑓𝑢𝑒𝑙,𝑗 is the PE factor associated with the fuel consumed by component (this 

can differ depending on the project country and the energy mix), for year  i. 

VERIFY uses the Primary Energy factors defined in “Support to Primary Energy 

Factors Review (PEF), Specific Tender ENER/B2/2021-593/2022-467, European 

Commission, DG ENER“. 

𝑂𝑃𝐸,𝑀𝑁,𝑗
[𝑖]  is the maintenance PE demand (inc. replacement \& EoL) of 

component j for year i. 

 
Unless explicit values are provided, the maintenance Primary Energy (PE) 

demand is calculated as a percentage of a component’s embodied PE. The End-

of-Life (EoL) PE demand is determined based on the planned disposal or recycling 

of the component at the end of its useful life. If a component reaches the end of 

its life during the analysis period and is scheduled for replacement, the embodied 

PE demand for the replacement is added to the component’s Operational PE 

Demand for that year 

https://op.europa.eu/en/publication-detail/-/publication/de7457ee-722f-11ee-9220-01aa75ed71a1/language-en
https://op.europa.eu/en/publication-detail/-/publication/de7457ee-722f-11ee-9220-01aa75ed71a1/language-en
https://op.europa.eu/en/publication-detail/-/publication/de7457ee-722f-11ee-9220-01aa75ed71a1/language-en
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6.1.1.2. Lifetime Global Warming Potential 

Lifecycle Global Warming Potential (GWP) is a critical environmental KPI that 

measures the total greenhouse gas (GHG) emissions produced throughout a 

project’s lifecycle. It is expressed in terms of kilograms of CO₂-equivalent per 

square meter of the building’s useful floor area. This indicator provides a 

comprehensive view of the carbon footprint associated with a project and helps 

evaluate its overall environmental performance. 

 
The total GWP consists of the following components: 

• Infrastructure (Embodied) GHG Emissions: These are emissions generated 

during the production and construction stages when a building 

component is installed for the first time. For renovation projects, any 

infrastructure costs incurred are allocated to the use stage, as outlined in 

the Level(s) framework. 

 

• Operational & Maintenance GHG Emissions: Emissions produced during the 

use stage of the building. These include maintenance-related emissions 

(from repair, replacement, and refurbishment activities) and operational 

emissions (from energy consumption such as electricity or fuel). 

 
GWP is calculated in four versions, which include the total and average annual 

demand for the whole building, and the total and annual average demand per m2 

of useful building area. The basis of the calculation is the GHG emissions over the 

lifetime of the entire project (assumed to be N years), which are calculated as the 

sum of the infrastructure (product / construction) emissions and use-stage 

emissions over the period of estimation, as shown in equation below: 

𝐿𝐺𝐻𝐺 = 𝐼𝐺𝐻𝐺 + ∑(𝑂𝐺𝐻𝐺
[𝑖]

)

𝑁

𝑖=1

 

 
Where:  

𝑂𝐺𝐻𝐺
[𝑖]  is the Operational GHG emissions of the building’s components in year i ; 

𝐿𝐺𝐻𝐺 denotes the Lifetime GHG emissions of the project; 

𝐼𝐺𝐻𝐺 denotes the Infrastructure (embodied) GHG emissions. 

 
GWP (as per the definition used in Level(s) indicator 1.2) is then calculated as: 
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𝐿𝐺𝑊𝑃 = 
𝐿𝐺𝑊𝑃

𝑈𝑠𝑒𝑓𝑢𝑙 𝑎𝑟𝑒𝑎
 

 
The useful area is defined as the total building area that is heated or cooled. The 

value is calculated in units of kgCO2-eq/m2. The latter’s equation can be written 

as: 

 

𝐿𝐺𝑊𝑃̅̅ ̅̅ ̅̅ ̅ =  
𝐿𝐺𝑊𝑃

𝑁⁄  
 

The Infrastructure (embodied) GHG emissions are defined as: 

 

𝐼𝐺𝐻𝐺 = ∑ 𝐼𝐺𝐻𝐺,𝑗
∀𝑗∈𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

 

 
where 𝐼𝐺𝐻𝐺,𝑗are the GHG Emissions embodied in component j and include the 

emissions associated with the manufacturing, transportation and installation of 

the component (i.e. Stage A of its lifetime). 

Note that infrastructure GHG emissions are taken into account only when 

components are installed at the beginning of a project and are not included in 

the calculation of this KPI for pre-existing components. Similarly, the components 

are assumed to remain in place (installed at the building) at the end of the 

analysis period, so end-of-life values are not added to the total. 

 
The Total Operational annual GHG emissions are defined as: 

 

𝑂𝐺𝐻𝐺
[𝑖]

= 𝑂𝐺𝐻𝐺,𝑀𝑁
[𝑖]

+ 𝑂𝐺𝐻𝐺,𝐹𝐼
[𝑖]  

 
And include: 

Annual emissions due to component maintenance: 

 

𝑂𝐺𝐻𝐺,𝑀𝑁
[𝑖]

= ∑ 𝑂𝐺𝐻𝐺,𝑀𝑁,𝑗
[𝑖]

∀𝑗∈𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
 

 
Where 𝑂𝐺𝐻𝐺,𝑀𝑁,𝑗

[𝑖] : the annual GHG emissions required for the maintenance of 

component j in year i. 

Whenever a component reaches its end-of-life, the assumption is that the 
component is replaced with an identical one. In this case, the associated end-of-
life (Stage C) embodied GHG emissions are added to the maintenance costs for 
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that year. This is because as far as the building as a whole is concerned, 
component replacement is part of its maintenance process. 
 
Emissions generated due to fuel imports for operating the components 

considered (Stage B – Use Stage): 

𝑂𝐺𝐻𝐺,𝐹𝐼
[𝑖] = ∑ 𝐹𝐼𝑘

[𝑖]
∙ 𝐸𝐹𝑘

[𝑖]

∀𝑘∈𝐹𝑢𝑒𝑙
 

Where: 

𝐹𝐼𝑘
[𝑖] is the total Fuel Imports for fuel type k in year i, obtained from energy 

demand timeseries (in kWh); 

𝐸𝐹𝑘
[𝑖]is the GHG emission factor associated with fuel type k (this can differ 

depending on the project country and the energy mix) in year i. For electricity 

specifically, country emissions factors are based on hourly historical values 

obtained from this source (VERIFY’s DB is updated annually). 

6.1.1.3. Lifecycle Costs (LCC) 

LCC calculated as the sum of all infrastructure costs (CAPEX), all operational costs 

of all the components and the residual values of components at the end of the 

project, as follows: 

𝐿𝐶 = 𝐼𝐶 +∑𝑂𝐶
(𝑖)

𝑁

𝑖=1

− 𝑉𝑅 

6.1.1.4. Pay Back Time (PBT) 

Payback Period is estimated as period Tp = TL + tr 

TL is the last period before the following inequality holds: 

∑(𝑂𝐶,𝑟𝑒𝑛
(𝑖)

− 𝑂𝐶,𝑏𝑙
(𝑖)
) > 𝐼𝐶,𝑟𝑒𝑛

(0)

𝑁

𝑖=1

 

And  

𝑡𝑟 = 1 −
∑ (𝑂𝐶,𝑟𝑒𝑛

(𝑖)
− 𝑂𝐶,𝑏𝑙

(𝑖)
)

𝑇𝐿
𝑖=1

𝐼𝐶,𝑟𝑒𝑛
(0)

 

 

Where 

𝐼𝐶,𝑟𝑒𝑛
(0) = Initial renovation investment costs 

𝑂𝐶,𝑟𝑒𝑛
(𝑖)

, 𝑂𝐶,𝑏𝑙
(𝑖)  = Renovation and baseline scenarios’ operating costs, respectively. 

https://app.electricitymaps.com/map
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6.1.1.5. Levelized Cost of Energy (LCOE) 

The Levelized Cost of Electricity (LCOE) is an economic KPI that measures the 

average cost per unit of electricity generated over the duration of a project’s 

lifetime, expressed in euros per kilowatt-hour (€/kWh). This KPI is essential for 

evaluating the cost- effectiveness of different energy generation systems, 

including renewable and non-renewable sources. 

The LCOE consists of the following cost components: 

• Infrastructure Costs (CAPEX): These are the capital expenditures incurred 

for the procurement, delivery, and installation of electricity generators. This 

cost is a one-time investment made at the beginning of the project or 

when new generators are installed. 

• Operation and Maintenance Costs: These are recurring costs associated 

with the ongoing operation and maintenance of the electricity generators. 

They include regular upkeep, repairs, and inspections to ensure efficient 

operation throughout the project’s lifespan. 

• Fuel Costs: If the building or district has electricity generators that use fuel, 

the fuel costs incurred during electricity generation are included. This 

component is variable and depends on the type of fuel used, fuel prices, 

and the efficiency of the generators. 

LCOE KPI provides a clear view of the financial performance of electricity 

generation systems, enabling stakeholders to compare different energy 

generation scenarios and select the most cost-effective option.LCOEis calculated 

using the following equation: 

𝐿𝐶𝑂𝐸 = 
∑

𝐼𝐶,𝐺𝐸𝑁
[𝑖]

+𝑂𝐶,𝐺𝐸𝑁,𝑀𝑁
[𝑖]

+𝑂𝐶,𝐺𝐸𝑁.𝑁𝐸𝐼
[𝑖]

(1+𝑟)𝑖
𝑁
𝑖=1

∑
𝑆𝐶[𝑖]+ 𝐸𝑋[𝑖]

(1+𝑟)𝑖
𝑁
𝑖=1

 

 
Where: 

𝐼𝐶,𝐺𝐸𝑁
[𝑖]  are the generator infrastructure costs (CAPEX) in year i; 

𝑂𝐶,𝐺𝐸𝑁,𝑀𝑁
[𝑖]  are the annual generator maintenance costs in year i (which include 

replacement costs, if the analysis period exceeds the generators’ lifetime); 

𝑂𝐶,𝐺𝐸𝑁.𝑁𝐸𝐼
[𝑖]  are the costs of fuel used for electricity generation in year i (applicable 

only in the case of electricity generators using other fuel); 
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𝑆𝐶[𝑖]𝑎𝑛𝑑 𝐸𝑋[𝑖]  are respectively the total energy that was self-consumed and 

exported by the building in year i; 

𝑟 is the project discount rate.  

The numerator of the fraction of the equation includes CAPEX of generators, 

maintenance costs of the generators and costs for fuels used for electricity 

generation.  

6.1.1.6. Net Present Value (NPV) 

NPV is defined as the sum of expected cashflows of all components included in 

the considered investment. The cashflow 𝐶𝐹𝑐𝑜𝑚𝑝 for a component k is equal to:  

𝐶𝐹𝑘
(𝑖)
= 𝑆𝑘,𝑓𝑢𝑛𝑐

(𝑖)
+ 𝑆𝑘,𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

(𝑖)
 −  𝐶𝑘,𝑖𝑛𝑓

(𝑖)
  −  𝐶𝑘,𝑚𝑛

(𝑖)
− 𝐶𝑘,𝑓𝑢𝑛𝑐

(𝑖)
− 𝐶𝑘,𝐸𝑂𝐿

(𝑖)  

Where:  

𝑆𝑘,𝑓𝑢𝑛𝑐
(𝑖) :  functional savings of component k in year (i), calculated on the basis of the 

corresponding expenditure expected during a baseline scenario 

𝑆𝑘,𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
(𝑖) :  residual value of component k in year (i) 

𝐶𝑘,𝑖𝑛𝑓
(𝑖) : is the infrastructure cost (CAPEX) of component k, incurred if the 

component is installed or replaced in year (i) 

𝐶𝑘,𝑚𝑛
(𝑖) : maintenance cost of component k in year (i) 

𝐶𝑘,𝑓𝑢𝑛𝑐
(𝑖) : functional cost of component k in year (i). Note that if the component 

generates revenue (through, e.g. the sale of electricity to the grid), this value may 

be negative (i.e. the component will contribute to cash flows).  

𝐶𝑐𝑜𝑚𝑝,𝑒𝑜𝑙: End-of-Life cost of the component comp, incurred if the component is 

replaced in year i. 

The calculation of the NPV KPI is based on the equation: 

∑
𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝑡
(1 + 𝑟𝑎𝑡𝑒)𝑡

𝑀−1

𝑡=0

 

Whererateis the investment project’s discount rate. As per Level(s) guidance, the 
default value is 4% (but can be configured to a different value). Here, 𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝑡 =
∑ 𝐶𝐹𝑡∀𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 . 

6.1.1.7. Internal Rate of Return (IRR) 

IRR is used to quantify the profitability of an investment while taking into account 

the time value of money. Its calculation is based on the following formula: 
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∑
𝑣𝑡

(1 + 𝑖𝑟𝑟)𝑡
= 0

𝑀

𝑡=0

 

In this formula 𝑣𝑡 = [𝑣0, 𝑣1, . . . , 𝑣𝑀]represent the expected future cashflow of the 

investment (marked as cashflow in NPV). 

 

6.1.1.8. Return On Investment (ROI) 

ROI is the cumulative sum of cashflow of the investment, with respect to the 

initial investment’s total cost (𝐼𝐶𝐴𝑃𝐸𝑋)as follows: 

𝑅𝑂𝐼 =
𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤. 𝑐𝑢𝑚𝑠𝑢𝑚

𝐼𝐶𝐴𝑃𝐸𝑋
 

 

6.1.2. Results for the dual test-run approach 

Resulting values of KPIs (INTEMA-approach) 
 CPERI Building 

Baseline 
Scenario 

CPERI Building 
Upgrade 
Scenario 

Differencein 
resulting values 

(%) 
Primary Energy 
Demand (kWh/m2/year) 111.88 117.39 4.68 

GHG Emissions  
(kgCO2-eq)/year/m2) 20.76 22.07 5.96 

Payback Period (years) No payback  No payback - 
Levelized Cost of 
Electricity (€/kWh/year) - 0.051 - 

NPV t=50 years (k€) - -2.160,13 - 
ROI t=50 years - -22.31 - 
IRR t=50 years - No payback - 

 
 
 
 

 

Cost Savings (INTEMA-approach) 

 LCCupgrade - LCCbaseline 

 (€/year) 
Costs Savings 8047.38 
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VERIFY - Comparative Plots for baseline and upgrade scenarios (INTEMA-
approach) 

 
Resulting values of KPIs (iSCAN-approach) 

 CPERI Building 
Baseline 
Scenario 

CPERI Building 
Upgrade 
Scenario 

Difference in 
resulting values 

(%) 
Primary Energy 
Demand 
(kWh/m2/year) 

184.58 191.82 3.77 

GHG Emissions  
(kgCO2-eq)/year/m2) 31.66 33.24 4.75 

Payback Period 
(years) No payback No payback - 

Levelized Cost of 
Electricity 
(€/kWh/year) 

- 0.051 - 

NPV t=50 years (k€) - -5.918,41 - 
ROI t=50 years - -61.12 - 
IRR t=50 years - No payback - 

 
Cost Savings (iSCAN-approach) 

 LCCupgrade - LCCbaseline 

 (€/year) 
Costs 

Savings 10902.6 

 
 

 
VERIFY - Comparative Plots for baseline and upgrade scenarios (iSCAN-

approach) 
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6.1.3. Comparison of relative deviations the dual test-run 
approach 

Deviation of relative difference between scenarios of Environmental KPIs 

 between the two approaches 

 Deviation of 
Relative 

Differences 
(%) 

Primary Energy 
Demand  0.91 

Global Warming 
Potential  1.21 

 

Relative difference of Cost Savings between the two approaches 

 Relative 
Difference (%) 

Costs Savings 26.19 
 

6.2. IS7 Annex 

6.2.1. SRIA questionnaire 

User preference among SRI functionalities and the assessment type 
Preference to improve the score of one key functionality in particular (optional) 

Energy performance and operation     

Response to the occupants' needs   

Energy flexibility   

Assessment preferences 

Do you want to use the detailed service 
catalogue or a simplified version? 

  Detailed 
  Simplified 

Lowest cost to increase the SRI class by one level   (default) 

Lowest cost to increase the SRI class by two levels   

Lowest cost to increase the SRI class by three 
levels 

  

Buildings characteristics 
Select your country   (among 30 countries) 

Sector:   Residential 
  Non-residential 

Floor area in m2   (number) 

Number of rooms or zones   (number) 
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Number of external windows   (number) 

Building characteristics relevant to heating domain 

How many heat generators are there in this 
building? 

(number) 

What is the main heating system of your 
building? 

  Heat pump 
  Gas boiler 
  Fuel boiler 
  Wood boiler 
  District heating network 
  Other 

Type of heating generator 1   Heat pump 
  Gas boiler 
  District heating network 
  Other 

Function of heating generator 1   Heating 
  Cooling 
  Both heating & cooling 

Type of heating generator XX   Heat pump 
  Gas boiler 
  District heating network 
  Other 

Function of heating generator XX   Heating 
  Cooling 
  Both heating & cooling 

Number of thermal storage units   (number) 

Number of distribution pumps   (number) 

Number of heating emitters   (number) 

Type of heating emitter 1   Radiator 
  Fan coil 
  TABS 
  Heat pump 

Function of heating emitter 1   Heating 
  Cooling 
  Both heating & cooling 

Type of heating emitter XX   Radiator 
  Fan coil 
  TABS 
  Heat pump 

Function of heating emitter XX   Heating 
  Cooling 
  Both heating & cooling 

Building characteristics relevant to cooling domain 

Is cooling mandatory for this type of building in 
your country? 

  Yes/No 

Is the building equipped with a cooling system?   Yes/No 

What is the principal cooling system of your 
building? 

  Heat pump 
  District cooling network 
  Other 
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How many cold generators are there in this 
building? 

  (number) 

Type of cooling generator 1   Heat pump 
  District cooling network 
  Other 

Function of cooling generator 1   Heating 
  Cooling 
  Both heating & cooling 

Type of cooling generator XX   Heat pump 
  District cooling network 
  Other 

Function of cooling generator XX   Heating 
  Cooling 
  Both heating & cooling 

Number of distribution pumps   (number) 

Number of cooling emitters   (number) 

Type of cooling emitter 1   Radiator 
  Fan coil 
  TABS 
  Heat pump 

Function of cooling emitter 1   Heating 
  Cooling 
  Both heating & cooling 

Type of cooling emitter XX   Radiator 
  Fan coil 
  TABS 
  Heat pump 

Function of cooling emitter XX   Heating 
  Cooling 
  Both heating & cooling 

Building characteristics relevant to ventilation domain 

Number of air handling units (AHUs)   (number) 

Type of AHUs control   No ventilation 
  Manual 
  Automatic 

Number of fan coils   (number) 

Type of fan coils control   No ventilation 
  Manual 
  Automatic 

Number of air quality sensors   (number) 

Building characteristics relevant to domestic hot water domain 

What is the principal DHW system of your 
building? 

  Direct electric heating 
  Integrated heat pump 
  Hot water generation 

Number of DHW generators   (number) 

Type of DHW generator 1   Direct electric heating 
  Integrated heat pump 
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  Hot water generation 

Coverage of DHW generator 1   Building 
  Floor 
  Apartment 
  Room/zone 

Type of DHW generator ZZ   Direct electric heating 
  Integrated heat pump 
  Hot water generation 

Coverage of DHW generator ZZ   Building 
  Floor 
  Apartment 
  Room/zone 

Is the building equipped with solar collectors for 
DHW? 

  Yes/No 

Building characteristics relevant to lighting domain 

Number of lighting points   (number) 

Building characteristics relevant to dynamic building envelope domain 

Number of solar protection systems on windows   (number) 

Building characteristics relevant to electricity domain 

Is the building equipped with an electricity 
production system (e.g., PV panels)? 

  Yes/No 

Is the building equipped with an electricity 
storage system (e.g., battery)? 

  Yes/No 

Is the building equipped with a combined heat 
and power (CHP- system)? 

  Yes/No 

Number of electricity production units   (number) 

Number of electricity storage units   (number) 

Building characteristics relevant to EV charging domain 

Is the building equipped with parking spaces?   Yes/No 

Number of parking slots   (number) 
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6.2.2. Example of smartness upgrades implemented in the SRIA 

Domain 

Smart-
ready 
service 

Functionality level 
upgrade FL0=>FL1 

Functionality level 
upgrade 

FL1=>FL2 

Functionality level 
upgrade 

FL2=>FL3 

Functionality level 
upgrade 

FL3=>FL4 

  

Upgrade 
action 
FL0=>FL1 

Cost 
FL0=
>FL1, 
€ 

Upgrade 
action 
FL1=>FL2 

Cost 
FL1=
>FL2, 
€ 

Upgrade 
action 
FL2=>FL3 

Cost 
FL2=
>FL3, 
€ 

Upgrade 
action 
FL3=>FL4 

Cost 
FL3=
>FL4, 
€ 

Cooling 

C-1d: 
Control of 
distributio
n pumps 
in 
networks 

Installation of 
a controller 
of pumps for 
heating like 
Thermador 
RA100 - 24V 
or equivalent 495 

Replacem
ent of 
on/off 
pump per 
a multi-
stage 
distribution 
pump 1100 

Installation 
of a speed 
variator on 
each 
distribution 
pump 1100 

Installation 
of a speed 
variator on 
each 
distribution 
pump and 
connection 
to an 
external 
controller 
or a 
SCADA 
system  

Ventilatio
n 

V-1a: 
Supply air 
flow 
control at 
the room 
level 

Installation of 
mechanically 
operated 
extract units 
with 
temporisatio
n and 
humidity 
detectors 94 

Installation 
of 
mechanica
lly 
operated 
extract 
units with 
temporisati
on and 
occupancy 
detectors 95 

Installation 
of single-
flow MCV 
with flow 
regulation 
based on 
humidity 
and VOC 
pollution 
sensors 
integrated 
in the 
ventilator 345 

Installation 
of control 
element 
with room 
temperatur
e controller 
function, 
communica
tion and 
CO2/moist
ure 
sensors 
installed 
locally by 
zone 436 

Lighting 

L-1a: 
Occupanc
y control 
for indoor 
lighting 

Installation of 
a controller 
for control of 
lighting 
circuits and 
of an 
interruptor 
for manual 
On/Off 237 

Installation 
of a motion 
or a 
presence 
detector 
with an 
integrated 
luminosity 
sensor 230 

Installation 
of a 
lighting 
controller 
with a 
motion or 
a presence 
detector 
with 
integrated 
luminosity 
sensor 1258   

Dynamic 
building 
envelop 

DE-1: 
Window 
solar 
shading 
control 

Installation of 
motor and 
control 
button for 
sun shading 
devices 300 

Installation 
of motor 
for solar 
shading 
devices, 
blinds 
controller 
and solar  

Installation 
of motor 
for solar 
shading 
devices, 
light/blind/
HVAC 
controller  

Data 
collection 
of weather 
forecasts 
from a web 
service and 
installation 
of a system  
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irradiation 
and/or 
luminosity 
sensors for 
an 
automated 
control 

and 
several 
ambient 
and 
outdoor 
sensors for 
an 
automated 
control of 
light/blind/
HVAC 

from the 
level 3 

Electricit
y 

E-2: 
Reporting 
informatio
n 
regarding 
local 
electricity 
generatio
n 

Installation of 
a PV panels' 
field with 
reporting of 
current 
generation 
data to final 
user  

Installation 
of a PV 
panels' 
field with 
reporting 
of current 
generation 
and 
historical 
data to 
final user 
OR setup 
of data 
historisatio
n 
functionalit
y if the PV 
panels' 
field is 
already 
installed  

Level 2 + 
weather 
forecast 
data 
collection 
from a web 
service + 
installation 
of AC and 
DC meters 
for 
performan
ce 
evaluation  

Level 3 + 
fault 
detection 
capacibility 
in order to 
identify 
problems 
of PV 
modules, 
strings or 
arrays  

Electrical 
vehicle 
charging 

EV-15: 
EV 
charging 
capacity 

Installation of 
an outdoor 
electrical 
plug for EV 
charging 
protected by 
a differential 
circuit 
breaker 184 

Installation 
of IRVE 
charging 
point with 
communic
ation, 
protections 
and 
eventually 
solar 
production 
control. 996 

Installation 
of IRVE 
double 
charging 
station 
with 
communic
ation, 
protections 
and 
eventually 
solar 
production 
control. 1639 

Installation 
of IRVE 
double 
charging 
station with 
communica
tion, 
protections 
and 
eventually 
solar 
production 
control. 1639 

Monitorin
g and 
control 

MC-9: 
Occupanc
y 
detection: 
connected 
services 

Installation of 
occupancy 
detector for 
control of 
lighting OR 
fan coils 250 

Installation 
of 
occupancy 
detector 
for control 
of lighting 
AND 
heating or 
fan coils 430     
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6.2.3. Sensitivity analysis for the SRIA 

Methodology  
In order to always consider the same list of services, all services from the 
catalogue A or B are considered applicable (which is a virtual situation, as some 
services are mutually exclusive). 
The corresponding impacts of each service upgrade from 0 to the next level, up to 
the smartest ones is considered for 40 cases, each case being defined by: 

• The focus chosen by the user (4 possibilities):  
• 0. Impact on overall SRI score  
• 1. Impact on key functionality 1 (efficiency)  
• 2. Impact on key functionality 2 (occupant)  
• 3. Impact on key functionality 3 (flexibility)  
• The building type (2 possibilities):  
• 1. Residential  
• 2. Non-residential  
• The climate zone (5 possibilities):  
• Northern Europe (NE)  
• Western Europe (WE)  
• Southern Europe (SE)  
• North-Eastern Europe (NEE)  
• South-Eastern Europe (SEE) 

 
The impact of smartness upgrades for each service is then calculated for every of 
the 40 cases considered and results are compared. 
The sensitivity analysis is presented in the form of graphs, illustrating the range of 
the impact of upgrading each service from zero to the smartest level. In other 
words, the graphs show to which extent the impact of the upgrade of each 
service from 0 to the smartest level (2, 3 or 4) varies according to the 5 climate 
zones. The graphs read as follows. 
 

Figure 73. How to read the graphs in the sensitivity analysis 
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Results for service catalogue A 
The figure below shows the impact on the overall SRI score of upgrading each 
service from zero to the smartest level. For instance, for a residential building, 
upgrading the service H-2b “Heat generator control (for heat pumps)” from 0 to 3 
(highest level) has an impact of 7.7% on the overall SRI score in the South-Eastern 
Europe (SEE) climate zone, while it has an impact of 13.1% in the Western Europe 
(WE) climate zone. More generally speaking, and logically, the variations are 
higher for the domains related to climate aspects (heating, domestic hot water, 
cooling, electricity). Variations are also higher for residential buildings than non-
residential ones. 
 

Figure 74.Variability of the impact on the overall SRI score of the 0-to-
smartest-level upgrade for each service of catalogue A for all climate zones, 

for residential buildings (left) and non-residential buildings (right) 

   
 
 
However, despite this variability, the list of service upgrades with the highest 
impact is relatively stable.  
Upgrading services H-1a, H-2b, V-1a and MC-13 from 0 to the smartest level always 
have a high impact, for all climate zones and building types. Upgrading services 
H-1c, H-3, C-4 and MC-25 from 0 to the smartest level also have high impact in 
most cases. 
By contrast, upgrading services L-1a, DE-4, EV-15, EV-16 and EV-17 from 0 to the 
smartest level always have a very low impact on the overall SRI score, for all 
climate zones and all building types, even more so for incremental upgrades from 
level 0 to level 1, level 1 to level 2, etc. As a result, it is quite unlikely that upgrading 
these services will be advised to level up the overall SRI score - except if all other 
services already score very high.  
Looking more particularly on upgrade impacts on each of the 3 key functionalities 
(see figure below), the following facts are observed from the data: 

• There is a high variability in the results for the key functionality 1 on 
efficiency. However, upgrading the services H-1a, H-2a, H-2b,  H-3, MC-
13 and MC-30 most often has a high impact. By contrast, upgrading 
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the services H-1c, DHW-1b, E-3, EV-15, EV-16 and EV-17 has zero or 
close-to-zero impact on this key functionality.  

• The impact on the key functionality 2 on occupants is not sensitive at 
all to climate zones and building types (no variability in the 
corresponding graphs). Upgrading from 0 to the smartest level the 
services H-1a, DHW-3, C-4, V-1a, V-6, DE-1 and MC-13 always is 
impactful. By contrast, upgrading services H-1c, H-3, DHW-1a, DHW-1b, 
E-3, EV-15, EV-16 and MC-25 always have a very low impact on this 
functionality.  

• There is a very high variability in the results for the key functionality 3 
on flexibility. However, upgrading the services H-1c, H-2b, DHW-1a, 
DHW-1b, C-4, EV-16 and MC-25 most often has a high impact. By 
contrast, upgrading the services H-1a, H-2a, H-3, DHW-3, C-1a, C-3, V-1a, 
V-6, L-1a, DE-1, DE-4, E-2, E-11, E-12, EV-15, MC-13 and MC-30 has zero or 
close-to-zero impact on this key functionality. 
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Figure 75. Variability of the impact on each key functionality  
for each service of catalogue A 
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Results for service catalogue B 
The next figure shows the impact on the overall SRI score of upgrading each 
service from zero to the smartest level, for catalogue B. As it was observed for 
catalogue A, the variations are higher for the domains related to climate aspects 
(heating, domestic hot water, cooling, electricity). Variations are also higher for 
residential buildings than non-residential ones. 

Figure 76. Variability of the impact on the overall SRI score of the 0-to-
smartest-level upgrade for each service of catalogue B for all climate zones, 

for residential buildings (left) and non-residential buildings (right) 

 
 
However, despite this variability, the list of service upgrades with the highest 
impact is relatively stable. Indeed, upgrading from 0 to the smartest level the 
services H-1a,H-2b, H-2d, H-3 and H-4 in the heating domain, and MC-3, MC-4, MC-
9 and MC-13 in the monitoring & control domain always have a high impact, for all 
climate zones and building types. Upgrading services H-1b and H-1ffrom 0 to the 
smartest level also have high impact in most cases. By contrast, upgrading 
services H-1c, H-1d, H-2a, C-1c, C-1d, C-1f, C-2a, C-2b, C-3, V-1c, L-1a, DE-2, DE-4, EV-15, 
EV-16 and EV-17 always have a very low impact (< 1%) on the overall SRI score, for 
all climate zones and all building types. As a result, it is quite unlikely that 
upgrading these services will be advised to level up the overall SRI score - except if 
all other services already score very high. Finally, there is a significant difference in 
the impact of upgrading services in the electricity domain depending on the 
building type (residential or non-residential).  
The next figures illustrate the impact of service upgrades on each of the 3 key 
functionalities. It is observed that: 

• There is a high variability in the results for the key functionality 1 on 
efficiency. However, upgrading the services H-1a, H-1b, H-2d, H-3, MC-4, 
MC-9, MC-13, MC-25, MC-28, MC-29 and MC-30 always is impactful. In 
the electricity domain, upgrading services E-2, E-11 and E-12 always is 
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impactful for residential buildings, but is never impactful for non-
residential buildings. It is the opposite for service C-3, the upgrade of 
which being impactful on the efficiency score for non-residential 
buildings, but only in one region (SEE) concerning residential 
buildings.  

• Concerning key functionality 2, as previously explained climate zones 
play no role in the impact of service upgrades. The services with the 
highest impact (≥ 4%) on this functionality are H-1b, C-1b, V-1a, V-6, L-2, 
DE-1, MC-4 and MC-13.  

• Finally, concerning key functionality 3, a limited number of service 
upgrades impact the flexibility subscore, but in this case, the impact 
can be very high (> 10%); the concerned services are in the heating, 
DHW, cooling and M&C domains. However, there is a more significant 
variability of this impact in the residential sector than in the non-
residential sector. 
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Figure 77. Variability of the impact on key functionality 1 of the 0-to-smartest-
level upgrade for each service of catalogue B for all climate zones, for 

residential buildings (left) and non-residential buildings (right) 
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Figure 78. Variability of the impact on key functionality 2 of the 0-to-smartest-
level upgrade for each service of catalogue B for all climate zones, for 

residential buildings (left) and non-residential buildings (right) 
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Figure 79. Variability of the impact on key functionality 3 of the 0-to-smartest-
level upgrade for each service of catalogue B for all climate zones, for 

residential buildings (left) and non-residential buildings (right) 
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6.3. IS4 Annex 

This annex presents the indicative forecasts of demand-side flexibility limits for 
the energy consumption sub-clusters of CERTH offices and Mpodosakeio Hospital. 
These forecasts are generated by the IS4 system, which utilizes data on energy 
consumption, weather conditions, and corresponding data from the previous day. 
The following figures illustrate the flexibility limits for increasing (blue) and 
decreasing (red) energy consumption, as well as the forecasted energy 
consumption (green). These results represent a one-day forecast with hourly 
granularity. At points where the three waveforms overlap, there is no available 
flexibility. 
 

 

Figure 80:Predicted Demand side flexibility bounds for the second energy 
consumption sub-cluster of CERTH Offices (up- flexibility bound (blue), down-

flexibility bound (red), baseline (green)) 
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Figure 81: Predicted Demand side flexibility bounds for the third energy 

consumption sub-cluster of CERTH Offices (up- flexibility bound (blue), down-
flexibility bound (red), baseline (green)) 

 
Figure 82. Predicted Demand side flexibility bounds for the fourth energy 

consumption sub-cluster of CERTH Offices (up- flexibility bound (blue), down-
flexibility bound (red), baseline (green)) 
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Figure 83. Predicted Demand side flexibility bounds for the fifth energy 

consumption sub-cluster of CERTH Offices (up- flexibility bound (blue), down-
flexibility bound (red), baseline (green)) 

 
Figure 84: Predicted Demand side flexibility bounds for the sixth energy 

consumption sub-cluster of CERTH Offices (up- flexibility bound (blue), down-
flexibility bound (red), baseline (green)) 
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Figure 85:Predicted Demand side flexibility bounds for the second energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 

 

 
Figure 86:Predicted Demand side flexibility bounds for the third energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 
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Figure 87:Predicted Demand side flexibility bounds for the fourth energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 

 
Figure 88:Predicted Demand side flexibility bounds for the fifth energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 
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Figure 89:Predicted Demand side flexibility bounds for the sixth energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 

 
Figure 90:Predicted Demand side flexibility bounds for the seventh energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 
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Figure 91:Predicted Demand side flexibility bounds for the eigth energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 

 
Figure 92:Predicted Demand side flexibility bounds for the ninth energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 
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Figure 93:Predicted Demand side flexibility bounds for the tenth  energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 

 
Figure 94:Predicted Demand side flexibility bounds for the eleventh energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 
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Figure 95:Predicted Demand side flexibility bounds for the twelfth energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 

 
Figure 96:Predicted Demand side flexibility bounds for the thirteenth energy 

consumption sub-cluster of Mpodosakeio Hospital (up- flexibility bound (blue), 
down-flexibility bound (red), baseline (green)) 

 
 

 


