

HORIZON-CL5-2022-D4-02

EUROPEAN COMMISSION

 European Climate, Infrastructure and Environment Executive Agency

Grant agreement no. 101123238

Smart Grid-Efficient Interactive Buildings

Deliverable DX.X

Deliverable D3.7

Integrated EVELIXIA Middleware Layer’s
and Orchestration

Project acronym EVELIXIA

Full title Smart Grid-Efficient Interactive Buildings

Grant agreement
number

101123238

Topic identifier HORIZON-CL5-2022-D4-02-04

Call HORIZON-CL5-2022-D4-02

Funding scheme HORIZON Innovation Actions

Project duration 48 months (1 October 2023 – 30 September 2027)

Coordinator
ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS
ANAPTYXIS (CERTH)

Consortium
partners

CERTH, RINA-C, CEA, CIRCE, UBE, HAEE, IESRD, UNIGE,
SOLVUS, R2M, EI-JKU, FHB, EEE, EG, ÖE, PINK, TUCN,
DEER, TN, ENTECH, SDEF, EGC, KB, AF, Sustain,
NEOGRID, MPODOSAKEIO, DHCP, HEDNO, BER, MEISA,
ITG, NTTDATA, TUAS, NEOY, HES-SO

Website https://www.evelixia-project.eu/

Cordis https://cordis.europa.eu/project/id/101123238

Disclaimer

Funded by the European Union. The content of this deliverable reflects the authors’
views. Views and opinions expressed are, however, those of the author(s) only and
do not necessarily reflect those of the European Union or the European Climate,
Infrastructure and Environment Executive Agency (CINEA). Neither the European
Union nor the granting authority can be held responsible for them.

Copyright Message

This report, if not confidential, is licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). A copy is available here:
https://creativecommons.org/licenses/by/4.0/.
You are free to share (copy and redistribute the material in any medium or format)
and adapt (remix, transform, and build upon the material for any purpose, even
commercially) under the following terms: (i) attribution (you must give appropriate
credit, provide a link to the license, and indicate if changes were made; you may do
so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use); (ii) no additional restrictions (you may not apply legal
terms or technological measures that legally restrict others from doing anything
the license permits).

ACKNOWLEDGMENT

This project has received funding from the European Union’s
Horizon Europe Framework Programme for Research and
Innovation under grant agreement no

101123238. Disclaimer: The European Commission is not

responsible for any use made of the information contained herein. The
content does not necessarily reflect the opinion of the European
Commission.

Deliverable D3.7

Integrated EVELIXIA Middleware Layer’s
and Orchestration

Deliverable
number

D3.7

Deliverable name
EVELIXIA platform external communication and
common information management

Lead beneficiary CIRCE

Description

This deliverable is directly linked to the activities
foreseen in Task 3.6, consolidating all foreseen technical
developments on EVELIXIA’s middleware layer
brokerage, orchestration, workflow management and
components functional integration. This report is
considered as the first version of D3.8

WP WP3

Related task(s) T3.6

Type Report

Dissemination level Public

Delivery date March 2025 (M18)

Main authors Alberto Moreno (CIRCE)

Contributors

Document history

Version Date Changes Author

V1 – first draft shared
with contributing
partners and
reviewers

28/01/25 CIRCE

V1 – reviews February ‘25

V1 – consolidated
version

February ‘25 CIRCE

2nd review February ‘25
NEOGRID,
SOLVUS,
CERTH,
ENTECH,
CEA

V2 – second draft February ‘25 CIRCE

Final version February ‘25 CIRCE

Final deliverable
submission

M18 (March 25) CIRCE

ABBREVIATIONS

Abbreviation Name

API (Application Programming Interface): A set of protocols and tools for
building software and applications, allowing different systems to
communicate with each other.

CIM (Common Information Model): A standard for representing data and
information in a consistent and interoperable manner, often using
ontologies like SAREF.

NLP (Natural Language Processing): A field of artificial intelligence that
focuses on the interaction between computers and humans through
natural language.

Pub/Sub (Publish/Subscribe): A messaging pattern where senders
(publishers) send messages to a topic, and receivers (subscribers)
receive messages from that topic.

SAREF (Smart Appliances REFerence ontology): An ontology developed to
enable interoperability between smart appliances and other devices.

SPARQL (Protocol and RDF Query Language): A query language used to
retrieve and manipulate data stored in Resource Description
Framework (RDF) format.

GLOSSARY OF TERMS

Abbreviation Name

Authentication The process of verifying the identity of a user or system.

Authorization The process of granting or denying access to resources based on the
authenticated identity.

Data Broker A middleware component that manages the distribution and
routing of data between different parts of the system, often using
pub/sub mechanisms.

Deployment
Pipeline

A series of automated processes that manage the deployment of
software from development to production environments.

Field Layer The layer in an architecture that includes devices and sensors
collecting data from the physical environment.

Knowledge
Graph:

A structured representation of data that enables semantic queries
and insights, often using technologies like SPARQL.

Northbound
Open API
Connector

A module that facilitates communication between the data
management layer and the application/services layer.

Ontology A formal representation of knowledge as a set of concepts and the
relationships between those concepts.

Security
Measures

Techniques and practices implemented to protect data and
systems from unauthorized access and threats.

Semantic
Query

A query that uses semantic technologies to retrieve data based on
the meaning and relationships of the data.

Service Broker A component that manages service requests and responses
between different parts of the system.

Southbound
Open API
Connector

A module that facilitates communication between the data
management layer and field layer devices.

TABLE OF CONTENTS
EXECUTIVE SUMMARY ... 9

1 INTRODUCTION AND OBJECTIVES .. 10

1.1 Scope and Context ... 10

1.2 Interaction with other Tasks and Work Packages..11

1.3 Structure of this deliverable..11

2 INTEGRATION STRATEGY ... 12

2.1 Objective .. 12

2.2 Approach ... 12

2.3 Steps ... 13

3 SOFTWARE COMPONENTS INTEGRATION ... 14

3.1 Southbound Open API Connector and Data Broker .. 14

3.2 Data Broker and Northbound Open API Connector ... 15

3.3 Northbound Open API Connector and Knowledge Graph 15

4 INTEGRATION WITH EXTERNAL COMPONENTS 16

4.1 Interaction with field layer devices... 16

4.2 Interaction with Application/Services layer .. 17

4.3 Interaction with Blockchain APIs .. 18

5 TEST SCENARIOS.. 19

5.1 Unit tests ... 19

5.2 Integration tests .. 20

5.3 Semantic Query Execution ... 21

5.4 Performance tests ... 22

5.5 Security tests .. 23

6 CONCLUSIONS ..24

7 REFERENCES ... 25

EXECUTIVE SUMMARY

This document outlines the testing and integration processes for the data
management layer, focusing on the verification of functionalities and the
seamless interaction between software components which have been
developed to efficiently collect, process, and expose data from pilot sites.

The testing and integration process begins with unit testing to verify the
functionality of individual components, including communication protocols,
data aggregation logic, and security measures, ensuring they operate
correctly in isolation, as well as verifying data quality, security and
consistency.

This is followed by testing the interactions between integrated components,
validating data flow between pilot sites APIs and the workflows for data
ingestion, and routing, under various load conditions through load and
stress testing to ensure it can handle the expected volume of data and user
interactions.

By adhering to these testing and integration processes, the data
management layer is validated to meet the requirements of collecting,
processing, and exposing pilot sites data, ensuring data integrity, security,
and accessibility through the EVELIXIA’s architecture.

1 INTRODUCTION AND OBJECTIVES

This chapter defines the objectives, scope, context, and structure of the
deliverable. It also outlines its relationship with other tasks within the
project. To this end D3.7 delivers the Integrated EVELIXIA Middleware Layer’s
and Orchestration, according to the Integration of EVELIXIA’s Middleware
layer components (T3.6).

1.1 Scope and Context

This deliverable is directly linked to the activities foreseen in Task 3.6,
consolidating all foreseen technical developments on EVELIXIA’s
middleware layer brokerage, orchestration, workflow management and
components functional integration.

The scope of this document, titled " Integrated EVELIXIA Middleware Layer’s
and Orchestration," encompasses the integration of the technical
developments and deployments within the data management layer of the
EVELIXIA platform described in D3.1 titled “EVELIXIA platform External
Communication and Common Information Management”.

Moreover, it aims to provide a comprehensive overview of the integration of
all the developed software components, by detailing the test scenarios, of
each software component, this document provides a clear framework for
understanding how the data management layer supports the overall
EVELIXIA platform architecture.

The integration document focuses on how the different components
interact and work together as a cohesive system within the pilot sites data
management framework:

• Integration strategies and end-to-end workflows.
• Detailed explanation of data flow between components.
• Comprehensive testing strategy to ensure seamless interaction and

functionality of the entire system.

1.2 Interaction with other Tasks and Work Packages

Deliverable D3.7 concisely presents the integration of the technical
developments within the data management layer, based on input from:

✓ WP1 (D1.3 & D1.7)

The software components developed in tasks T3.1 and T3.2 are designed to
interact closely with and depend on the developments from:

✓ WP2 (T2.4)

✓ WP3 (T3.3, T3.4&T3.5)

✓ WP4 (T4.6)

✓ WP5 (T5.2)

1.3 Structure of this deliverable

The deliverable is constituted by the following chapters which are
interrelated and provide an overall analysis of the EVELIXIA platform
architecture.

• Chapter Introduction and Objectives

• Chapter Integration Strategy: environment setup, and test scenarios

• Chapter Software Components Integration: Details on key components
interaction like the Southbound and Northbound Open API Connectors,
Data Broker, Knowledge Graph, and Common Information Model (CIM).

• Chapter Integration with external components: data broker and service
broker end-to-end.

• Chapter Test Scenarios: incremental approach to consolidate each software
component after being deployed

• Chapter Conclusion: Summary and future enhancements.

• Chapter References

2 INTEGRATION STRATEGY

By following this approach, it has been ensured that each development works
correctly on its own and that the entire system operates seamlessly when all
components are integrated:

1. Development Phase: Each software component is developed individually.
During this phase, the focus is on ensuring that each component functions
correctly on its own.

2. Deployment and Testing: Each component is deployed and tested multiple
times. This iterative process continues until the component's functionality
meets the expected criteria. Any issues identified during testing are resolved,
and the component is refined accordingly.

3. Integration Testing: Once all components have been individually tested and
validated, the next step is to test them together. This involves deploying all
components in a shared environment and conducting tests to observe how
they interact with each other. The goal is to ensure that the integrated
system functions as expected and that there are no issues arising from the
interactions between components.

The first two phases are fully described in D3.1 “EVELIXIA platform external
communication and common information management”.

2.1 Objective

To ensure seamless interaction and data flow between the Southbound
Open API Connector, Data Broker (Apache Airflow), Northbound Open API
Connector, and Knowledge Graph (GraphDB with SAREF ontology).

2.2 Approach

• Incremental Integration: Integrate components incrementally, starting
with the Southbound Open API Connector and Data Broker, followed by the
Knowledge Graph and finally the Northbound Open API Connector

• Continuous Testing: Implement continuous testing at each integration
stage to identify and resolve issues early.

2.3 Steps

1. Initial Setup:

• Deploy each component in isolated environments using Docker.

• Ensure that each component is independently functional and passes
its respective tests.

2. Component Integration:

• Integrate components in a step-by-step manner, verifying data flow
and functionality at each stage.

3. End-to-End Integration:

• Perform end-to-end tests to verify that data flows seamlessly from
pilot sites data to the service broker.

• Ensure that all components interact correctly, and that data is
accurately collected, processed.

4. Data flow

• The Southbound Open API Connector will access pilot site to gather
RAW data (POST -raw JSON data-) RAW ENDPOINT 1. This has been
achieved for M18.

• T3.3 transformation modules will read the RAW data through GET
request to the Southbound Open API RAW ENDPOINT 1. This
preliminary interaction has been achieved for M18.

• T3.3 transformation modules will store healed data through POST
requests which will store healed data in dedicated PostgreSQL
database. This will try to be also achieved for M18.

• Data Broker will insert healed data into the knowledge graph
database (GraphDB) through a POST to the HEALED ENDPOINT 2-

• Service broker API will read healed data through GET HEALED
ENDPOINT 2

3 SOFTWARE COMPONENTS INTEGRATION

This section provides a detailed overview of the key components developed
within the data management layer already described in D1.3. Each
component plays a crucial role in facilitating seamless data integration and
communication across the EVELIXIA platform. The developments include
the Southbound and Northbound Open API Connectors, which enable
interaction with field devices and application/services layers, respectively.

Additionally, the Data Broker manages data routing and pub/sub
mechanisms, while the Knowledge Graph offers semantic query capabilities
for deeper insights. The Common Information Model (CIM) standardizes
data exchange, ensuring interoperability and consistency.

These components form a robust middleware layer that enhances the
EVELIXIA platform's overall functionality and scalability.

The integration of these components creates a cohesive system that
efficiently manages Pilot Sites data from collection to exposure.
Comprehensive testing, including unit, integration, and performance
testing, ensures the system meets the required standards for functionality,
reliability, and scalability.

3.1 Southbound Open API Connector and Data Broker

• Integration Steps:

• Configure the Data Broker (Apache Airflow) to periodically fetch
data from the Southbound Open API Connector.

• Verify data flow by checking that the Data Broker successfully
ingests and processes data from the connector.

• Testing:

• Perform data collection and ingestion tests to ensure accurate
data capture and processing.

• Validate the scheduling and execution of workflows in Apache
Airflow.

3.2 Data Broker and Northbound Open API Connector

• Integration Steps:

• Configure the Northbound Open API Connector to fetch data
from the Data Broker.

• Verify data flow by checking that the Northbound Open API
Connector successfully retrieves, transforms, and exposes data.

• Testing:

• Perform data retrieval, transformation, and exposure tests to
ensure data integrity and accuracy.

• Validate the security mechanisms for data access and
transmission.

3.3 Northbound Open API Connector and Knowledge Graph

• Integration Steps:

• Configure the Knowledge Graph component to ingest data
exposed by the Northbound Open API Connector.

• Verify data flow by checking that RDF data is correctly ingested
into GraphDB and that SPARQL queries return expected results.

• Testing:

• Perform data ingestion and SPARQL query tests to ensure
correct data integration and querying.

• Validate the performance and scalability of the knowledge
graph.

4 INTEGRATION WITH EXTERNAL COMPONENTS

4.1 Interaction with field layer devices

For this first interaction (M18), these have been the selected pilot sites: Greek,
Austrian and Danish. This decision is based on the availability and
matureness of both data and metadata, apart from being well documented
and ready to use.

Objective:

• To integrate the developed API (T2.4) of various pilot sites to obtain
RAW data from field devices.

Integration Steps:
1. API Configuration:

• Identify and configure the APIs provided by different pilot sites
for accessing raw data from Pilot sites data.

• Ensure that the APIs support the required communication
protocols (HTTPS) and data formats (JSON, JSON-LD).

• Implement comprehensive API documentation using tools like
Swagger to facilitate understanding and integration for
developers. Ensure the documentation includes detailed
information on endpoints, parameters, expected responses, and
error codes to enhance usability and reduce integration time.

2. Data Collection:
• Implement the Southbound Open API Connector to periodically

fetch raw data from the configured APIs.
• Use task scheduling (Apache Airflow) to automate the data

collection process at specified intervals.

3. Data Aggregation:
• Aggregate data from multiple field devices to provide a unified

view.
• Ensure data consistency and accuracy during the aggregation

process.

4. Error Handling:
• Implement error handling mechanisms to manage

communication failures or data inconsistencies.
• Log errors and retry data collection as necessary.

Testing:
• Data Collection Test: Verify that the Southbound Open API

Connector can successfully fetch data from the APIs of the selected
pilot sites.

• Data Aggregation Test: Ensure that data from multiple field devices

is correctly aggregated.
• Error Handling Test: Simulate API failures and verify that the

connector handles errors gracefully.

4.2 Interaction with Application/Services layer

Objective:

• To facilitate the interaction between the Data Broker (middleware
data management layer) and the service broker through the
Northbound Open API Connector, using a publish-subscribe
mechanism.

Integration Steps:
1. Data Publishing:

• Configure the Northbound Open API Connector to expose
healed data to the service broker.

• Implement data transformation and healing rules to ensure
data quality before publishing.

2. Service Broker Subscription:
• Set up the service broker to subscribe to the data published by

the Northbound Open API Connector.
• Future use in the second prototype (M33) of a publish-subscribe

mechanism (MQTT to Kafka topics) to manage data flow
between the Data Broker and the service broker.

3. Data Routing:
• Ensure that the Data Broker routes transformed data to the

Northbound Open API Connector for publishing.
• Implement dynamic routing based on predefined rules and

conditions.

4. Security and Access Control:

• Implement authentication and authorization mechanisms
(T4.5) to secure data access.

• Ensure data integrity and confidentiality during transmission
through SSL certificates.

Testing:

• Data Publishing Test: Verify that the Northbound Open API
Connector can successfully publish healed data to the service broker.

• Subscription Test: Ensure that the service broker can subscribe to and
retrieve data from the Northbound Open API Connector.

• Data Routing Test: Verify that the Data Broker correctly routes data
to the Northbound Open API Connector.

• Security Test: Ensure that authentication and authorization
mechanisms are correctly implemented.

4.3 Interaction with Blockchain APIs

Objective:

• To integrate with blockchain APIs for smart contracts and user
management (login/register/tokenize access to resources).

Integration Steps:
1. Smart Contracts API:

• Configure the API to interact with smart contracts on the
blockchain.

• Implement functions to deploy, execute, and query smart
contracts.

• Ensure that data integrity and transaction security are
maintained.

2. User Management API:
• Configure the API to handle user login, registration, and

tokenization of access to resources.
• Implement functions for user authentication, authorization, and

token management.
• Ensure secure handling of user credentials and tokens.

3. Data Integration:
• Integrate blockchain data with the existing data management

layer.
• Ensure that data from smart contracts and user management is

accurately captured and processed.

4. Security and Compliance:
• Implement robust security measures to protect blockchain

transactions and user data.
• Ensure compliance with relevant regulations and standards.

Testing:

• Smart Contracts Test: Verify that the API can successfully deploy,
execute, and query smart contracts.

• User Management Test: Ensure that the API can handle user login,
registration, and tokenization securely.

• Data Integration Test: Verify that blockchain data is accurately
integrated with the data management layer.

• Security Test: Ensure that all security measures are correctly
implemented and effective.

5 TEST SCENARIOS

Testing data management layer involves several challenges and complexities due
to the nature of the pilot site data, software components and their interactions.
Below are the main test scenarios, along with the key challenges and strategies to
address them.

By focusing on the following scenarios, a comprehensive overview is provided of
how the individual components are combined into a functioning system, ensuring
that all interactions and dependencies are properly managed and validated.

5.1 Unit tests

Objective: To verify the functionality of individual components.

Components: Southbound Open API Connector, Data Broker, Northbound Open
API Connector, Knowledge Graph.

Tests:

• Data collection, ingestion, transformation, exposure, and querying.

• Use testing frameworks like PyTest (Python) and Mocha (Node.js) for
automated unit testing.

Challenges:

• Data Availability: Pilot sites data may have intermittent data availability,
making it difficult to consistently test data collection.

• Mocking External Dependencies: Simulating external APIs and data
sources accurately for unit tests.

Strategies:

• Own-generated data was prepared while pilot sites API development was
ongoing to simulate sensor data and external dependencies

• Implement retry mechanisms and error handling to manage intermittent
data availability.

5.2 Integration tests

Objective: To verify the interaction between integrated components.

Components: Southbound Open API Connector with Data Broker, Data Broker
with Northbound Open API Connector, Northbound Open API Connector with
Knowledge Graph.

Tests:

• Data flow, transformation, and routing between components.

• Use integration testing tools like Postman for API testing and Airflow's built-
in testing capabilities.

Challenges:

• Data Consistency: Ensuring data consistency and integrity across multiple
components.

• Complex Workflows: Managing complex workflows and dependencies
between components.

Strategies:

• Implement comprehensive data validation checks at each integration point.

• Use automated tests to validate integration points and ensure data
consistency.

5.3 Semantic Query Execution

Objective: To verify the complete data flow from pilot sites data to the service
broker.

Components: All components integrated together.

Tests:

• Data collection from sensors, processing through the Data Broker, exposure
by the Northbound Open API Connector, and querying in the Knowledge
Graph.

• Possibility to use end-to-end capabilities of OpenAI API to convert natural
language queries to semantic queries for the second protype (M33).

Challenges:

• End-to-End Data Flow: Establishing a complete end-to-end data flow to test
the entire cycle of capturing raw data, transforming it, and storing it as
healed data.

• Data Transformation and Ontology Conversion: Converting data to the
SAREF ontology (JSON-LD) and storing it in the knowledge graph
(GraphDB).

Strategies:

• Set up a controlled test environment with simulated pilot sites data and data
sources (own-generated dummy data in the early stages of the project).

• Use automated scripts to simulate the entire data flow and validate each
step.

• Implement detailed logging and monitoring to track data flow and identify
issues.

5.4 Performance tests

Objective: To ensure the system can handle the expected load and data volume.

Components: All components.

Tests:

• Load testing, stress testing, and scalability testing.

• Use performance testing tools like JMeter to simulate high load and
measure system performance.

Challenges:

• Scalability: Ensuring the system can scale to handle large volumes of data
and high concurrency.

• Resource Management: Managing resource allocation and performance
under load.

Strategies:

• Implement horizontal scaling and load balancing to manage high
concurrency.

• Use performance monitoring tools to track resource usage and optimize
performance.

5.5 Security tests

Objective: To ensure data security and integrity.

Components: Northbound Open API Connector, Data Broker, Knowledge Graph.

Tests:

• Authentication, authorization, data encryption, and vulnerability scanning.

Challenges:

• Data Protection: Ensuring data is protected during transmission and
storage.

• Access Control: Implementing robust access control mechanisms to
prevent unauthorized access.

Strategies:

• Use encryption for data at rest and in transit.

• Implement role-based access control (RBAC) and regular security audits.

Apart from securing communications with SSL, RAW data will be read
unencrypted, as already stated by the API PS developers.

Basic resources access control through tokenization mechanism.

Robust security measures will be implemented in T4.5 developments to
protect data integrity and confidentiality.

Additionally, AES Data privacy will be implemented for the second protype
(M33).

6 CONCLUSIONS

The integration of the pilot sites data within the data management layer is
a complex yet essential process that ensures seamless interaction and data
flow between various components. This document has outlined a
comprehensive strategy for integrating and testing each component,
addressing these key challenges:

1. Southbound Open API Connector:

• Responsible for collecting RAW data from pilot sites and
ensuring timely and reliable data capture.

• Integrates with the data broker to provide a unified view of
sensor data.

2. Data Broker:

• Orchestrates workflows for periodic data ingestion,
transformation, and routing through Apache Airflow.

• Ensures data quality and consistency through comprehensive
data validation and error handling mechanisms.

3. Northbound Open API Connector:

• Exposes healed data (transformed in T3.3 modules) to the
service broker, ensuring data is clean and validated.

4. Knowledge Graph and Common Information Model (CIM):

• Utilizes GraphDB to store and manage the SAREF ontology,
enabling advanced semantic querying.

• Provides context insights and relationships from pilot sites data.

5. Blockchain APIs:

• Integrates with identity management and NFT to enhance data
security and access control, defined in T3.4 & T3.5.

• Ensures secure handling of blockchain transactions and user
credentials.

7 REFERENCES

[1] Application Integration: Complete Guide - Gartner: This guide covers
application-centric integration, including key technologies, best
practices, and the differences between application-centric, data-centric,
and event-centric integration approaches Application Integration:
Complete Guide | Gartner

[2] Software Integration: Its Importance and Implementation - Adeptia: This
comprehensive guide explores the definitions, main components, types,
and processes of software integration, along with associated challenges
and solutions
Software Integration: Its Importance and Implementation | Adeptia

[3] Software Integration: Benefits, Examples, and Best Practices - NIX
United: This article discusses the processes, types, benefits, and
examples of software integration, and covers best practices for
efficiently integrating applications
https://nix-united.com/blog/guide-to-software-integration-with-
examples-types-and-benefits/

https://www.gartner.com/en/articles/application-integration
https://www.gartner.com/en/articles/application-integration
https://www.adeptia.com/blog/software-integration

