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EXECUTIVE SUMMARY 
The present deliverable reports on the development of the Autonomous District 

Digital Twin (ADDT) within the EVELIXIA Grid-to-Building (G2B) Services 

Framework. ADDT expands the Buildings as Active Utility Nodes (BAUNs) concept 

to district-scale applications, enabling validation of various scenarios in a virtual 

environment; the proposed framework targets to promote an automated decision-

making processes for enhanced energy management, system planning, operation, 

and maintenance at the grid level. 

The report outlines two coupled objectives. The first objective is the development 

of EVELIXIA’s Network Awareness and Forecasting Framework (NAFF), featuring 

two Innovative Solutions (IS). The first one, namely the Multi-Vector Grids Energy 

Modelling and Simulation (IS15), provides a high-level intelligent Virtual Network 

(iVN) for city or community-level energy distribution simulations without requiring 

detailed physical grid models, thus enabling effective scenario testing and energy 

profiling. The second one, namely the Multi-Vector Smart Grid Maintenance Service 

(IS14), complements the district-level digital twin concept by extending the iVN 

capability to perform predictive maintenance analysis across multi-vector 

networks. 

The second objective addresses the creation of EVELIXIA's Autonomous District 

Decision Support Framework (ANDSF), incorporating tools designed to support 

decision-making at the district and grid levels. The Grid Investment Planning 

Assistant Service (IS11) facilitates long-term strategic planning through proactive 

identification and evaluation of future network bottlenecks via comprehensive 

Cost-Benefit Analysis (CBA). The Multi-Vector Energy Network Manager Service 

(IS12) supports grid operators by effectively managing local congestion with 

flexibility-driven solutions that adhere to operational constraints. Additionally, the 

Aggregated Demand Portfolio Manager Service (IS13) enables energy aggregators 

to dynamically manage demand portfolios, aggregating building-level demand 

flexibility to actively participate in energy balancing markets. 

The integration of NAFF and ANDSF results in a comprehensive digital twin 

framework, targeting the needs of grid/network operators, energy aggregators, 

utilities, and other actors managing multi-building portfolios.  



 

The outcomes of the present deliverable correspond to the activities of Tasks 4.3 

and 4.4 of WP4, as performed up to M18 of the project. The developed and reposted 

ISs demonstrate potential for replication across diverse network scenarios, with 

methodologies designed for adaptability, thanks to the generalization of models, 

coupled with multi-target simulation and data-driven methods.  

This deliverable serves as the first milestone towards the development of the 

building blocks of the EVELIXIA services layer that will be deployed in real-world 

applications; in light of this, further steps towards the final version of the innovative 

solutions (up to M33) should focus on iterative engagement with grid-level actors 

of the project, including system operators and aggregators, to co-define scenario 

development and parameters’ definition, as well as real-world data access. On the 

other hand, effort should be made to the successful integration of heterogenous 

data, multiple interconnected innovative solutions within the project and variable 

operational environments into compact solutions. 
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1 INTRODUCTION AND OBJECTIVES 

1.1 Scope and objectives 

The main scope of the current deliverable is to report the development of the grid-

equivalent Autonomous District Digital Twin (ADDT) under the EVELIXIA Grid-to-

Building (G2B) Services Framework, allowing for validating different scenarios at 

the district level in a virtual testbed. ADDT extends the Buildings as Active Utility 

Nodes (BAUNs) vision to districts and aims to optimize energy management at a 

district scale.  

In this context, two main objectives have been identified, as follows: 

Objective 1: To develop the EVELIXIA’s Network Awareness and Forecasting 

Framework (NAFF). Towards this objective, a high-level district modelling tool for 

performing simulations of city/community-level energy distribution networks 

(intelligent Virtual Network – iVN, IS15) is built for the detailed network-level energy 

profiling, using energy conservation and power-flow analysis, across multiple 

energy vectors. A multi-vector smart grid maintenance service (IS14) is also 

developed to extend the capabilities of iVN engine, to assess the health level of 

multi-grid related assets, when connected to energy networks. The activities and 

progress of this objective is described in Section 2 of the present document. 

Objective 2: To develop the EVELIXIA’s Autonomous District Decision Support 

Framework (ANDSF). Towards this objective, the simulation capabilities of the iVN 

will be leveraged to create a set of decision-making and support services at the 

district/grid level, including the Grid Investment Planning service (IS11), the Multi-

vector Network Management services (IS12) and the Aggregated Demand Portfolio 

Management services (IS13). These services focus on grid stakeholders (grid 

operators, energy aggregators, retailers, etc.), providing services from the Grid to 

the Building that could mutually benefit both sides. The activities and progress of 

this objective are described in Section 3 of the present document. 

The interaction of the two objectives (frameworks) results in the EVELIXIA 

Autonomous District Digital Twin (depicted in Figure 1), aiming to cover the needs 

of Energy Aggregators, Utilities and any actor managing a portfolio of several 

building nodes. 



 

EVELIXIA – D4.3 EVELIXIA Autonomous District Digital Twins 14 

 

Figure 1. EVELIXIA Autonomous District Digital Twin Concept 

1.2 Structure 

The structure of the deliverable is as follows: 

• Chapter 2 presents the work performed within T4.3 on the development and 

implementation of the Network Awareness & Forecasting Framework under 

the G2B Services Framework, highlighting its contribution to the broader 

EVELIXIA ADDT solution detailing the development of IS14 and IS15. 

• Chapter 3 describes the work performed within T4.4 on the development of 

the innovative solutions IS11, IS12 and IS13, supporting the EVELIXIA ADDT 

framework. 

• Chapter 4 summarizes the main conclusions for both tasks (T4.3 & T4.4) and 

discusses the future steps towards the next version of the present 

deliverable, i.e., by the end of the task in M33 of the project lifetime. 

1.3 Relation to Other Tasks and Deliverables  

D4.3 is directly linked to the activities foreseen in Task 4.3 and Task 4.4, 

consolidating all foreseen technical developments on situation awareness, 

forecasting and autonomous decision-making mechanisms at district and network 

levels. This report is considered as the first version of D4.4, which will focus on 

refining the context of the ISs developed in Tasks 4.3 and 4.4 according to the 

experience acquired from the pilots’ implementation and tests’ validation. 
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2 EVELIXIA’S NETWORK AWARENESS AND 
FORECASTING FRAMEWORK (NAFF) 

The increasing complexity of modern energy systems, driven by the integration of 

diverse energy vectors (electricity, thermal, gas), the widespread adoption of 

distributed energy resources (DERs), and the evolving role of consumers as active 

participants in energy markets, necessitates advanced tools for network awareness 

and forecasting. Grid operators, energy aggregators, and utilities face significant 

challenges in ensuring efficient, resilient, and flexible energy systems capable of 

accommodating these dynamic changes. To address this, EVELIXIA’s NAFF plays a 

pivotal role in enhancing situational awareness, enabling predictive maintenance, 

and supporting informed decision-making across multi-vector energy networks. 

Chapter 2 reports the work performed within T4.3 on the development and 

implementation of the NAFF under the G2B Services Framework, highlighting its 

contribution to the broader EVELIXIA ADDT solution. The ADDT is designed to 

extend the BAUNs concept to the district level, fostering inter-building energy 

optimization and facilitating automated decision-making for holistic energy 

management. Unlike traditional digital twins that often require extensive 

digitization of physical grid assets, the EVELIXIA ADDT adopts a building-centric 

approach, leveraging aggregated building data, occupant patterns, utility signals, 

and DER integration to optimize energy exchanges and enhance overall system 

flexibility. 

The chapter is structured as follows: 

• Section 2.1: Introduction – Provides the context, objectives, and importance 

of the NAFF within the EVELIXIA project, including the interplay between the 

NAFF and the ANDSF. 

• Section 2.2: EVELIXIA District Digital Twin – Solution Design Overview – 

Offers a detailed description of the ISs developed within T4.3 along their 

objectives, methodology, results and next steps.  

o Section 2.2.1: Multi-Vector Grids Energy Modelling and Simulation 

solution (IS15) 

o Section 2.2.2: Multi-vector Smart Grid Maintenance service (IS14)  
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2.1 Introduction 

The global push for decarbonization, decentralization, and digitalization in energy 

systems is transforming the way energy networks are planned, operated, and 

maintained. The widespread adoption of DERs, the increasing participation of end-

users in energy markets, and the growing complexity of multi-vector energy 

systems call for solutions that can deliver real-time awareness, accurate 

forecasting, and optimized decision-making.  

Digital Twin (DT) technologies have emerged as a promising response to these 

challenges. Traditionally, DTs represent virtual replicas of physical assets, enabling 

simulations, real-time monitoring, and predictive analytics for enhanced 

operational efficiency. In the energy sector, DTs have been widely applied to model 

physical grids, offering valuable tools for asset management, grid planning, and 

fault detection. Leading technology providers, such as Siemens (PSS), GE Digital 

(Grid Solutions), OPAL RT, ALTAIR, and ANSYS, have developed comprehensive DT 

platforms supporting these applications. Several European Transmission System 

Operators (TSOs), including Finland’s Fingrid and the Netherlands’ TenneT, have 

implemented DT solutions to improve their grid operations, maintenance, and 

asset management processes. 

Despite their effectiveness, conventional grid-focused DT solutions often require 

extensive data collection and detailed digitization of physical assets, which can be 

cost-prohibitive and complex to scale. Additionally, many existing platforms 

emphasize single-vector energy systems, overlooking the growing importance of 

multi-vector interactions and decentralized energy management at the district 

level. 

Recognizing these gaps, the EVELIXIA project has developed an innovative 

approach through the EVELIXIA ADDT. Rather than focusing solely on the physical 

grid, the ADDT emphasizes building energy digital twins and aggregated district-

level data to model energy exchanges and consumption patterns. This approach 

minimizes the need for extensive grid digitization while enabling accurate 

simulations and optimizations of multi-vector energy flows. The ADDT integrates 

information from buildings, DERs, occupant behaviors, utility signals, and weather 

forecasts to deliver comprehensive energy management services. 
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The ADDT is underpinned by the synergy between two core frameworks: 

• Network Awareness and Forecasting Framework (NAFF): Provides 

capabilities for detailed energy profiling, predictive maintenance, and 

simulation across electricity, thermal, and gas networks. 

• Autonomous Network Decision Support Framework (ANDSF): Utilizes 

data from the NAFF to support decision-making in grid investment 

planning, network management, and demand portfolio optimization. 

This interplay enables a two-way, transactive energy system where buildings not 

only consume but also actively respond to grid signals, facilitating demand-side 

flexibility and improved energy efficiency across the district. 

2.2 EVELIXIA district digital twin – Solution Design Overview 

As mentioned above, T4.3 focuses on the development of the following ISs: 

▪ Multi-Vector Grids Energy Modelling and Simulation solution (IS15): A high-level 

modeling tool that simulates energy distribution without requiring detailed 

physical grid modeling, enabling virtual testing of district-level control scenarios. 

▪ Multi-Vector Smart Grid Maintenance Service (IS14) to assess the health of grid-

related assets and supports predictive maintenance strategies. 

These services are presented in detail in the following subsections. 

2.2.1 Multi-Vector Grids Energy Modelling and Simulation solution 
(IS15) 

The Multi-Vector Grids Energy Modelling and Simulation solution (IS15) developed 

by IES within the EVELIXIA project is based on the IES intelligent Virtual Network 

(iVN) software. The iVN is a high-level district modelling tool for performing 

simulations of city or community-level commodity distribution networks.  

Specifically, it performs Hierarchical Demand Aggregation and Supply Allocation; 

the iVN aggregates the demand for particular commodities, such as Electricity and 

Heat and allocates supplies (provision) to specific providers in order to meet the 

demand.  The iVN can also perform physics simulations of PV panels, wind turbines 

and other renewable energy technologies, perform energy balance calculations, 

take into account existing storage provisions, track the use of Fuels and other 

Commodities (such as Water), estimate the impact of changes in tariffs and 

calculate CO2 emissions associated with the direct consumption of fuels and the 
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indirect CO2 emissions resulting from the consumption of electricity, heat and 

cooling. 

The main purpose of the iVN is to assist utility operators, policy makers and 

engineers with city or district-level decision making with regards to the supply and 

management of natural and man-made resources and the devices that make that 

possible.  Specifically, it can inform users of the current performance of various 

utilities and quantitatively predict the impact of changes to city-infrastructure. 

Unlike traditional urban-scale modelling tools, iVN employs a hybrid approach that 

combines 3D building geometry models with 2D schematic representations of 

energy distribution infrastructure. The software is designed to optimize energy 

distribution at a city/community level by aggregating demand and allocating loads 

to providers efficiently. 

Within EVELIXIA, iVN is further enhanced to integrate real-time building energy 

demand data and digital twin instances, ensuring a bottom-up approach to urban-

scale energy modelling. The key advancement is the ability to federate individual 

building digital twins into a platform-level digital twin, enabling a more holistic 

optimization strategy for energy networks. 

2.2.1.1 Objectives 

IS15 is designed to support network operators, urban planners, and policymakers 

by facilitating scenario-based analysis that enhances decision-making on energy 

distribution, flexibility, and infrastructure investments. 

IS15 - Technical Objective: To transition from TRL5 to TRL7, IS15 will aim at 

improving its functionality, reliability, and real-world applicability. Initially designed 

as a high-level district modelling tool, the solution will be expanded to integrate 

real-time energy data from buildings, distribution networks, and external grid 

operators, ensuring a more dynamic and accurate representation of energy flows. 

A key enhancement involves the federated digital twin approach, where multiple 

building-level models will be aggregated to create a holistic district-wide 

simulation, capturing the complex interplay between various energy vectors. 

Additionally, IS15 will introduce advanced automation mechanisms, enabling 

periodic, physics-based simulations to run autonomously based on predefined 

triggers, minimizing the need for manual intervention. The platform’s 
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interoperability will also be reinforced through standardized data exchange 

protocols, allowing seamless integration with other EVELIXIA ISs, such as IS12 

(Multi-Vector Network Manager) and IS14 (Smart Grid Maintenance Service). By 

embedding predictive analytics and demand-response modelling, IS15 will not only 

support energy planning but also enable real-time decision-making, ensuring that 

urban energy networks operate more efficiently and sustainably. 

IS15 - Scientific Objective: Beyond its technical advancements, IS15 will contribute 

to scientific research on urban energy modelling by exploring multi-vector 

interactions, predictive analytics, and decentralized energy management 

strategies. A central focus of this research is to develop a deeper understanding of 

energy flow dynamics at the district level, assessing how different energy carriers—

such as electricity, heat, and cooling—interact under varying conditions, including 

extreme weather events and peak demand fluctuations. The project will also 

investigate the impact of integrating RES and flexibility mechanisms on district-

level energy stability, contributing to decarbonization efforts and regulatory policy 

development. The validation of IS15 in the pilot sites will provide a real-world 

testbed for these scientific developments, ensuring that the models and 

methodologies established can be effectively replicated and adapted across 

different urban environments.  

2.2.1.2 Methodology 

The IS15 development follows a structured methodology comprising three key 

phases: 

1. Data Integration & Model Development 

• Data Collection: Real-time and historical data are collected from various 

sources, including building management systems (BMS), smart meters, 

weather forecasts, and operational grid data.  

• Building Digital Twin Federation: Individual building digital twins 

modelled within VE software in T4.1 are integrated into the iVN software 

to capture localized energy demand and generation profiles. This 

bottom-up approach ensures the aggregated district-level model 

accurately reflects building-level dynamics. 

• Multi-Vector Network Model Construction: Commodity networks 

(electricity, heat, cooling, water) are represented using a combination of 
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2D schematic infrastructures and 3D building geometries. These models 

account for physical constraints, technical specifications of generation 

units, storage devices, and energy conversion systems. 

2. Simulation & Optimization 

• Energy Flow Simulations: Simulations are run to model energy flows 

across different vectors, considering demand-supply dynamics, weather 

conditions, and operational constraints. Advanced physics-based models 

are used for renewable generation technologies and storage units. 

• Scenario Analysis: Multiple control scenarios, including extreme weather 

conditions, equipment failures, and demand surges, are evaluated to 

assess network robustness and flexibility. 

3. Interoperability & Validation 

• Ontology Alignment: To ensure seamless communication with other 

EVELIXIA components, standardized ontologies are used for data 

exchange, ensuring semantic interoperability. 

• Pilot Implementation: The Greek demonstration site serves as the initial 

validation environment, where simulations are compared against actual 

operational data to calibrate and refine models. 

• Continuous Feedback Loop: An iterative process ensures that 

simulation outcomes inform subsequent model adjustments, enhancing 

prediction accuracy and operational relevance. 

2.2.1.3 Evaluation & Results 

The evaluation phase of IS15 commenced with the Greek pilot site, focusing on a 

simplified yet representative model of the local electricity and heat networks. The 

goal of this initial phase was to validate the iVN platform’s capabilities in 

aggregating building-level demands, integrating renewable energy generation, 

and simulating multi-vector energy flows at a district scale. Emphasis was placed 

on ease of implementation while ensuring sufficient granularity to inform decision-

making processes. 

The Greek pilot analyses 2 buildings, the Mpodosakeio Hospital and the 

CERTH/CPERI building, located in the Northwestern part of Ptolemaida city in 

Greece. Both buildings use district heating to cover their thermal loads, however, 

in Mpodosakeio a system of installed solar thermals of total power 625kWth is used 
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(for solar cooling), while in CERTH building, photovoltaic panels with a power of 10 

kW is utilized and an additional system of 38 kW is planned to be installed (for 

covering own electric loads). In the case study power line, 40-EORDEAS,  there are 

67 PV plants connected to the grid. 

For the first iteration as a simplification of the grid, the simulation model was 

configured around three primary electricity demand nodes (represented in yellow 

in Figure 2): 

• Electric Node 1: Aggregated electricity demand of all other energy users in 

the study area beyond the two targeted buildings. 

• Electric Node 2: Represents the simulated electricity demand of the 

building modelled through digital twins developed in Task 4.1 (e.g., CERTH 

building using IS5 outputs). 

• Electric Node 3: Captures the electricity demand of the local hospital facility 

(e.g., Mpodosakeio Hospital), given its significant and constant energy 

consumption profile. 

Then, as the 2 buildings’ thermal energy is covered by district heating, the heat 

network is represented by the red heat nodes in Figure 2. 

To streamline the modelling process while maintaining accuracy, the following 

assumptions were adopted: 

• Node 1 Aggregation: For this initial phase, Node 1 consolidates the total 

demand from all other consumers in the study area.  

• Network Configuration: The network’s schematic representation prioritizes 

elements critical to the analysis, with slight simplifications in the connection 

map that can be refined in subsequent phases if needed. 

• Photovoltaic (PV) Generation: An aggregated PV node was included to 

represent the district’s renewable electricity supply. This node assumes the 

following parameters: 

o 76 PV plants aggregated into a single generation node. 

o Efficiency of 20% for each PV system. 

o Total installed capacity of 9,710 kW with a uniform south-facing 

orientation. 

• Weather Data: Simulations utilized an aggregated Athens weather profile, 

serving as a proxy for local climatic conditions affecting both demand and 

renewable generation. 
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Figure 2. Greek Pilot District Digital Twin simplified model in iVN 

 

Simulation Workflow and Methodology 

The evaluation was conducted through a multi-step process: 

1. Building Digital Twin Development: The two key buildings (CERTH and the 

hospital) were modelled using IS5, capturing detailed operational and 

occupant-driven demand profiles. 

2. Data Integration: Simulated demand profiles from IS5 were imported into 

IS15 to establish accurate demand nodes within the district model. 

 

Figure 3. Energy Demand profiles (Electricity and Heat) associated to Node 3 - 
Mpodosakeio Hospital within iVN 

3. Network Configuration: A simplified iVN network was developed, 

incorporating the three demand nodes, the aggregated PV generation 



 

EVELIXIA – D4.3 EVELIXIA Autonomous District Digital Twins 23 

node, and a connecting electricity node to simulate supply-demand 

interactions. 

4. Renewable Energy Integration: The PV node was configured according to 

the assumptions listed above to assess the impact of local renewable 

generation on meeting district demand. 

5. Weather Data Application: The model was subjected to hourly weather 

inputs derived from the Athens profile to reflect real-world variability in 

temperature, solar irradiance, etc.. 

6. Output Generation and Data Export: Simulation outputs were exported to 

the iSCAN platform, ensuring accessibility for project partners. The data 

included hourly readings in a tabular format covering: 

• Carbon emissions per node 

• Electricity demand (total and imported) 

• Electricity generated by PV systems 

• Heat demand for the relevant nodes 

An example of the timeseries output in iVN can be seen in Figure 4 below. 

 

Figure 4. Total electricity demand per the total electricity node 
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Below in Figure 5 is an example of the iSCAN interface displaying simulation 

outputs. Users can interact with the data through customizable dashboards, filter 

by node, and compare demand and generation trends over selected timeframes. 

 

Figure 5. iVN simulated PV electricity generation viewed in iSCAN 

2.2.1.4 Next steps 

The next development steps for IS15 focus on expanding its capabilities through 

integration, testing, and validation in real-world scenarios. The following roadmap 

outlines key milestones: 

1. Model the Future Scenario of the Greek Pilot: Implement the next phase 

of IS15 simulations at the Greek pilot site, incorporating additional real-world 

grid data and adding to the model the future assets that will be installed. 

2. Replicate the Methodology to Other Pilot Sites: Apply the approach to the 

other pilot locations within the EVELIXIA framework, ensuring 

generalizability and adaptability to different urban contexts. 

3. Progress on Integration with Other ISs:  

• Establish connections between the DSM and the central data 

repository: Ensure that IS15-generated data is fully synchronized with 

the EVELIXIA platform’s central repository. Develop secure and 

automated data pipelines for continuous data transfer.  

• Automate DSM output forwarding at required frequency: Implement 

real-time DSM data transmission to ensure that IS15 can interact 

dynamically with other ISs and external grid operators.  
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• Implement automated trigger for periodic dynamic simulation: 

Develop and test an automated triggering mechanism that periodically 

initiates physics-based dynamic simulations based on predefined time 

intervals or grid state changes. Ensure that simulations operate 

autonomously and align with real-time network conditions. 

• Test and validate simulation trigger stability: Conduct long-term 

performance tests to evaluate whether the automated simulation 

mechanism can maintain reliability and accuracy over extended periods. 

• Validate DSM output transfer to the Central Data Repository: Perform 

integration testing to confirm that all DSM-generated data is being 

correctly archived and remains accessible for further analytics and 

decision-making. 

By following this structured development plan, IS15 will enhance its effectiveness 

in urban energy modelling, predictive analytics, and demand-side management, 

ensuring its practical applicability across multiple pilot sites. 

2.2.2 Multi-Vector smart grid maintenance service (IS14) 

The increasing integration of multi-grid related assets, such as Battery Energy 

Storage Systems (BESS), photovoltaic (PV) systems, heat pumps (HPs), etc., into 

electrical networks requires a more efficient approach to maintain the reliability 

and efficiency of the electrical grid, considering Medium/Low Voltage (MV/LV) 

substations, and power lines maintenance planning. Traditionally, outage planning 

for maintenance has been executed using fixed time-based strategies, often 

leading to suboptimal scheduling, unnecessary maintenance, or failure to detect 

critical asset deterioration in time. 

To address this challenge, the Smart Grid Maintenance Planning solution leverages 

live/real-time data collection, health assessment models, and predictive analytics 

to ensure that maintenance activities are planned proactively rather than 

reactively. This condition-based maintenance approach allows for early fault 

detection, extending grid-connected assets’ life while minimizing disruptions and 

preventing catastrophic failures. 

Furthermore, the tool integrates with a Digital Twin environment (for the project, 

the tool will be integrated with the iVN simulation engine), utilizing real-time/live 
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sensor data to enhance maintenance decisions. By simulating assets’ behaviour 

and predicting failure risks under different conditions, it provides actionable 

insights for proactive maintenance strategies, thus improving the reliability and 

efficiency of the grid. 

The high-level overview of the tool is depicted in Figure 6. 

 
Figure 6. High-level overview of the smart grid maintenance tool 

In summary, by shifting from static time-based maintenance to predictive and 

optimized scheduling, the tool enhances grid reliability, cost efficiency, and 

operational continuity for system operators. 

2.2.2.1 Objectives  

IS14 - Technical Objective "TRL5 to TRL7": With original functionalities developed 

and validated in the relevant environment of several past EU-funded projects (e.g. 

ONENET GA No. 957739) the Smart Grid Maintenance solution is introduced to 

EVELIXIA at TRL5. Advancing towards TRL6, a working version of IS14 is tested with 

simulated transformer datasets and artificial faults’ injection, as it is further 

described in Section 2.2.2.3. The final version of IS14 will undergo validation using 

simulated or live data extracted by IS15 - "intelligent Virtual Network" (iVN) (see 

Section 2.2.1), ensuring applicability to each pilot site network under study. As part 

of EVELIXIA’s platform integration, progressing towards TRL7 until the end of the 

project, future efforts and refinements of the tool target demonstration of the 

technology across EVELIXIA pilot sites, thus ensuring its applicability to support 

real-world smart maintenance outage planning for multi-grid related assets. 

IS14 - Scientific Objective: The Smart Grid Maintenance Planning solution is 

designed to optimize maintenance scheduling for grid assets according to asset 

criticality and health condition, dynamically adjusting schedules to address higher-
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risk components promptly. Specifically, the solution targets at minimizing grid 

operational disruptions and improve efficiency in maintenance resource allocation, 

via mathematical-based optimization that coordinates maintenance tasks 

strategically, aligning relevant interventions with periods of low demand and 

utilizing DERs and building flexibility assets. 

2.2.2.2 Methodology 

The core component of the Smart Grid Maintenance Planning is the Analytics 

Engine, as depicted in Figure 7, integrating three discrete modules: data 

processing, health assessment, and optimization-based maintenance planning. 

These modules work in synergy to provide a proactive asset management 

approach for grids, facilitating informed decision-making and optimized 

maintenance scheduling, as described in the following paragraphs. 

 

Figure 7. Smart Grid Maintenance Planning methodology – Analytics Engine 
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The first stage involves preprocessing and cleaning the incoming operational data 

streams, encompassing various parameters relevant to each asset. This step 

ensures data completeness, proper formatting, and suitability for subsequent 

analysis. The preprocessing includes handling missing data via imputation 

techniques, encoding categorical features appropriately, and identifying outliers 

indicative of potential asset faults. To ensure uniformity across features, z-score 

normalization [1] is applied as follows: 

𝑋′ =  
(𝑋 − 𝜇)

𝜎
 

Eq.2.2.2.1                                                                                                            

where X’ is the normalized data value, X is the raw input data, μ is the mean value 

of the feature across the dataset and σ is the standard deviation of the feature. 

This normalization ensures that data features are standardized for use in predictive 

models. 

Health Assessment 

The tool deploys machine learning models for predicting asset health status of 

critical grid components. The predictive models use real-time sensor data and 

historical trends to assess degradation. 

A general regression model for estimating asset Health Index (HI) can be expressed 

as follows: 

𝐻𝐼𝑡 = 𝑓(𝑋𝑡) + 𝜖                                                                                                                    Eq. 2.2.2.2 

 

where HIt is the estimated Health Index at time t, f(⋅)1 denotes the trained machine 

learning model that predicts asset HI based on operational features [2], Xt is the 

feature vector comprising asset-specific operational parameters (e.g., voltage, 

 
 
 
1 The choice of 𝑓(⋅) depends on the available data (size, quality, and historical depth) and 
computational constraints (real-time inference vs. batch processing) and accuracy 
requirements (interpretability vs. prediction precision). Linear regression is simple but 
limited in capturing nonlinear degradation. Random Forests provide high interpretability 
but may struggle with very large datasets. Gradient Boosting offers high accuracy but 
requires careful hyperparameter tuning. Neural Networks handle highly nonlinear 
relationships but require large training data. 
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current, temperature, etc.), and ϵ (epsilon) accounts for the model uncertainty 

(residual error term). 

The estimation of HI is guided by asset-specific degradation factors which 

accelerate asset aging. A lower HI value indicates worsening asset condition, while 

a higher HI suggests the asset is in good health. Assets with HI values below a 

predefined threshold are prioritized for proactive maintenance scheduling.  

To ensure that only relevant features are included in the health index estimation, a 

correlation-based feature selection approach is applied, based on the Pearson 

Correlation Coefficient Formula [3]. A correlation matrix for key operational 

parameters is computed to understand dependencies between the different 

operational features. Features with high positive correlation to degradation 

indicators negatively impact HI, whereas features with high negative correlation 

indicate operational stability 

In real world implementation, the model is periodically retrained with updated 

datasets to dynamically adapt to evolving grid conditions, ensuring continuous 

improvement in HI predictions and maintenance prioritization. 

Maintenance Scheduling Optimization 

Once asset degradation is identified, the tool optimizes maintenance scheduling 

using Linear Programming (LP) to minimize service impact while ensuring that 

critical maintenance tasks are prioritized. The optimization problem is formulated 

as follows: 

min ∑ ∑ 𝑊𝑖𝑥𝑖,𝑑
𝐷
𝑑=1

𝑁
𝑖=1                                                                                                          Eq. 2.2.2.3 

 

where xi,dx is a binary decision variable (1 if maintenance task i is scheduled on day 

d, 0 otherwise), Wi is the task priority weight, computed as follows: 

𝑊𝑖 =
1

𝐻𝐼𝑖
𝑃𝑖                                                                                                                        Eq. 2.2.2.4 

where HIi reflects asset condition urgency (lower HI means the asset is closer to 

failure), and Pi represents the criticality score quantifying the asset’s impact on grid 

reliability. 

N represents the number of assets under study, while D represents the number of 

days in the scheduling horizon. 
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The optimization problem is subject to the following constraints: 

▪ Each maintenance task is scheduled exactly once: 

∑ 𝑥𝑖,𝑑 =
𝐷
𝑑=1 1, ∀ 𝑖 ∈ 𝑁                                                                                                       Eq. 2.2.2.5 

 

▪ Maximum number of maintenance tasks per day: 

∑ 𝑥𝑖,𝑑 ≤
𝑁
𝑖=1 𝑀,    ∀ 𝑑 ∈ 𝐷                                                                                                    Eq. 2.2.2.6 

where M represents the maximum number of maintenance tasks that can be 

executed per day due to resource constraints. 

▪ Task scheduling constraint within the planning horizon: 

𝑥𝑖,𝑑 ∈ {0,1},    ∀ 𝑖, 𝑑                                                                                                               Eq. 2.2.2.7 

The solution to this optimization problem provides an optimal maintenance 

schedule that ensures the most critical tasks are executed first while balancing 

operational constraints. 

To improve scheduling efficiency, maintenance tasks are classified based on the 

detected anomalies. This ensures that each failure type is matched with an 

appropriate maintenance intervention (e.g., cooling system maintenance for assets 

with overheating anomalies, such as high winding temperatures in transformers, 

etc.). Different grid assets experience distinct degradation mechanisms, thus asset-

specific classification rules must be adapted accordingly. 

Additionally, to further refine priority scores, correlation analysis is introduced to 

adjust maintenance urgency based on feature dependencies. The revised task 

priority weight can be formulated as follows: 

𝑊𝑖′ = 𝑊𝑖(1 + ∑ 𝐶𝑖,𝑗𝑗 )                                                                                                         Eq. 2.2.2.8 

where Ci,j denotes the absolute correlation between the operational parameter 𝑖 

and other grid health indicators. This ensures that maintenance urgency increases 

when the asset’s degradation is linked to multiple failure-related variables. 
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2.2.2.3 Evaluation & Results  

To validate the operation of the smart grid maintenance tool, a test-run is 

conducted on simulated transformer datasets. This process ensures that real-time 

and historical asset data are structured, analyzed, and validated before moving to 

predictive modeling and optimization-based maintenance scheduling. It is noted 

that in this deliverable, only electricity network components are examined, 

although the methodology can be applicable to assets related with multi-energy 

networks, if such data is available. 

The dataset used for this validation reflects real-world operational conditions of two 

MV/LV distribution transformers (namely Transformer 2 and Transformer 3). It 

consists of hourly measurements over a defined period and includes both normal 

operation data and artificial faults to evaluate the tool's ability to detect anomalies 

and optimize maintenance actions. The recorded parameters include operational 

variables that can be measured from actual transformers, such as Voltage (V), 

Current (A), Active Power (kW), Reactive Power (kVAR), Apparent Power (kVA), 

Power Factor, Frequency (Hz), Total Harmonic Distortion (THD, %), Ambient 

Temperature (°C), Winding Temperature (°C), Oil Temperature (°C), Energy 

Consumption (kWh) and Load Profile (%). The injected faults include overheating 

events where the winding temperature exceeds 90°C, voltage drops where voltage 

falls below 210V (reflecting the European grid’s nominal 230V voltage levels), and 

power quality issues characterized by THD levels above 7%. These fault conditions 

mimic real grid disturbances and stress conditions that impact transformers’ 

health, thus allowing to assess the effectiveness of the anomaly detection and 

maintenance optimization processes. 

The reason for including two transformers for this test-case is to prove the tool’s 

ability to analyze and optimize maintenance scheduling for several grid 

components, as is the real case. In the test-run, each transformer's dataset is 

processed independently, ensuring that transformer-specific degradation trends 

and failure risks are accurately captured. 

Before using the dataset for predictive modeling, a preprocessing step was applied 

to clean and structure the data. Missing values were handled appropriately: 

numerical values were filled with zeros where applicable, while categorical and 

timestamp values were interpolated using previous data points to maintain 
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continuity. Timestamps were formatted consistently to ensure proper time 

indexing for trend analysis.  

Additionally, several condition indicators were derived to enhance the dataset's 

analytical value. The health status was estimated based on the thermal stress 

impact on the transformer, using deviations in winding and oil temperature from 

nominal values 2  [4], [5]. The criticality score was dynamically scaled based on 

voltage stability and load profile, while a priority index was assigned based on 

Health Index [6] ensuring that assets closer to failure received higher maintenance 

urgency. 

The results from this data processing are presented in Figure 8, Figure 9, Figure 10, 

Figure 11, Figure 12 and Figure 13. 

 
 
 
2 Transformer aging is predominantly driven by thermal stress, particularly due to high 
winding temperatures. The insulation system inside transformers degrades over time due 
to heat exposure, reducing the ability to withstand electrical and mechanical stresses. 
According to IEEE Std. C57.91-2011 and IEC 60076-7, insulation aging is exponentially related 
to temperature. Thermal models, such as the Arrhenius equation and IEEE aging formulas, 
suggest that the rate of degradation doubles for every 6-8°C increase in winding 
temperature above the reference operating condition (typically 110°C for oil-immersed 
transformers). The loss of insulation life can be estimated based on the cumulative effect of 
overheating. The HI estimation formula is derived from the thermal deviation of winding 
and oil temperature from nominal operational values, following a linear degradation 
approach, where each degree of overheating reduces the remaining insulation life. This 
aligns with transformer health assessment methodologies used in predictive maintenance. 
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Figure 8. Distribution of different parameters’ values based on the simulated datasets 
for transformer 2 

 

 

Figure 9. Distribution of different parameters’ values based on the simulated datasets 
for transformer 3 
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Regarding Figure 8 and Figure 9, it can be observed that the winding temperature 

for Transformer 2 ranged from 61.25°C to 99.39°C, while Transformer 3 exhibited 

values between 61.22°C and 98.85°C. Peak temperatures exceeding 95°C indicate 

potential overheating risks, warranting close monitoring. The oil temperature for 

Transformer 2 varied between 59.25°C and 71.32°C, while for Transformer 3, it ranged 

from 59.34°C to 70.72°C. Although oil temperature remained relatively stable, its 

correlation with winding temperature fluctuations suggests thermal stress 

accumulation. 

Calculated HI values confirmed these observations. Transformer 2 presented HI 

values from 0.61 to 0.99, while Transformer 3 ranged from 0.47 to 0.91. Lower HI 

scores approaching 0.5 suggest substantial health degradation, signaling a need 

for timely intervention and proactive maintenance3 [7]. 

Moreover, the temperature histograms for the two transformers depicted in Figure 

10 and Figure 11 present clear signs of overheating, particularly in winding 

temperature distributions. Time-series trend plots highlighted frequent and sharp 

spikes in winding temperature, indicative of severe load fluctuations. 

 
 
 
3 Industry standards indicate that transformers typically have a design life of 25-40 years, 
but this is contingent on normal operating conditions. However, actual transformer lifespan 
is significantly impacted by operational stresses, particularly thermal conditions. 
Transformers exhibiting a Health Index (HI) of 0.5 or lower represent advanced degradation 
stages, signaling substantial insulation deterioration and reduced reliability. Assets in this 
range necessitate close monitoring, timely preventive maintenance, or strategic planning 
for replacement to prevent failure. Following guidelines such as C57.91-2011 (IEEE) and IEC 
60076-7, transformers showing continuous deviations from nominal thermal conditions, 
reflected in low Health Index values, must be prioritized for intervention to avoid 
catastrophic failures and minimize the risk of unplanned outages. 
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Figure 10. Temperature histogram based on the simulated datasets for transformer 2 

 

Figure 11. Temperature histogram based on the simulated datasets for transformer 

Furthermore, the three-dimensional scatter plots in Figure 12 and Figure 13 

illustrate the relationship between voltage, load profile, and criticality score 

demonstrating how high load stress and voltage fluctuations contribute to 

increased criticality scores. This visualization is particularly useful in identifying 

transformers under severe operational stress that may require prioritization in 

maintenance schedules. 
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Figure 12. 3-D scatter plot illustrating the relationship between voltage, load profile, and 
criticality score based on the simulated datasets for transformer 2 

 

Figure 13. 3-D scatter plot illustrating the relationship between voltage, load profile, and 
criticality score based on the simulated datasets for transformer 3 

With the completion of the data processing stage, predictive modeling was 

conducted to estimate transformer health status using historical and live/real-time 

(simulated) operational parameters. 

A Regression Bagged Ensemble model was selected for predictive modeling, 

implemented using MATLAB 2024a – fitrensemble function [8].  This ensemble 
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model, utilizing a Bootstrap Aggregating (Bagging) approach, was selected for its 

robustness against variance and its ability to handle fluctuations common in 

transformer sensor data. Specifically, multiple decision trees were trained and 

combined to provide stable and accurate predictions of the transformer Health 

Index [9]. 

The training features included key operational parameters: Voltage, Current, Active 

Power, Reactive Power, Apparent Power, Power Factor, Frequency, Energy 

Consumption, Load Profile, Ambient Temperature, Winding Temperature, and Oil 

Temperature. The target variable for prediction was the HI, as calculated in the data 

processing step, reflecting transformer health status based on deviations from 

nominal thermal conditions. 

The datasets were split into 80% for model training and 20% for model testing, 

ensuring a rigorous and unbiased assessment. For Transformer 2, the predictive 

model achieved an RMSE of approximately 0.05, demonstrating high accuracy in 

estimating transformer health. Similarly, Transformer 3 achieved the same RMSE, 

indicating consistent model performance across different datasets. 

The results for the two transformer datasets under study are presented in Figure 14 

and Figure 15, presenting a comparison between actual and predicted Health Index 

values through scatter plots. These plots confirmed a strong correlation between 

actual and predicted values, with minimal deviations from the ideal reference line. 
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Figure 14. Comparison between actual and predicted Health Index after the training of 
the predictive model for the simulated datasets for transformer 2 

 

Figure 15. Comparison between actual and predicted Health Index after the training of 
the predictive model for the simulated datasets for transformer 3 

After the predictive model is now trained, the next step is Anomaly Detection, 

where it is evaluated whether the model’s predictions deviate from expected 

trends and detect abnormal behavior in transformer operations. The analysis in this 

test-case focused on monitoring voltage stability, thermal stress in winding 

temperatures, and power quality issues related to THD. For this test, the voltage 
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threshold was set at 207V, consistent with operational standards, while winding 

temperatures above 90°C and THD levels exceeding 7% were flagged as anomalies. 

The detection process revealed a significant number of abnormal events in both 

transformers, with each one recording 53 voltage anomalies, 87 temperature 

anomalies, and 44 THD anomalies. This resulted in a total of 184 identified 

anomalies per transformer, as depicted in Figure 16 and Figure 17. 

 

Figure 16. Identified anomalies based on the simulated datasets for transformer 2 

 

Figure 17. Identified anomalies based on the simulated datasets for transformer 3 
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The voltage anomalies indicate potential supply instability, which may be caused 

by excessive loading, fluctuations in distribution voltage, or network faults. 

Persistent voltage sags can lead to inefficient transformer performance and 

increased heating, which accelerates insulation degradation. The presence of 53 

voltage-related anomalies suggests that further analysis is needed to assess the 

root causes of these fluctuations and their impact on long-term transformer 

reliability. 

The winding temperature anomalies were the most frequent issue, with 87 

recorded instances per transformer where temperatures exceeded the critical 

threshold of 90°C. Elevated thermal conditions accelerate the aging process of 

insulation materials, reducing the remaining useful life of the transformer. 

Persistent overheating can be attributed to high load conditions, insufficient 

cooling mechanisms, or external environmental factors such as elevated ambient 

temperatures. If left unaddressed, such conditions can lead to insulation 

breakdown and potential transformer failure. 

THD anomalies were detected 44 times per transformer, signaling power quality 

concerns within the system. Excessive harmonic distortion negatively impacts 

transformer efficiency, contributing to additional heating and potential resonance 

issues. These anomalies suggest the presence of non-linear loads, such as industrial 

machinery or power electronic converters, that inject harmonics into the system. 

Elevated THD levels beyond 7% indicate the need for further investigation into load 

characteristics and potential mitigation strategies such as harmonic filters or 

improved network balancing. 

The next step involves refining the prioritization of the detected anomalies (in this 

case the total of 184 detected anomalies) to focus on the most critical faults 

requiring intervention. The maintenance optimization phase classifies and 

schedules necessary corrective measures based on severity, ensuring that the most 

at-risk transformers receive timely attention to prevent failures and minimize 

operational disruptions. 

The maintenance optimization process has been successfully completed for both 

Transformer 2 and Transformer 3. The optimization phase utilizes the detected 

anomalies, transformer health indicators, and feature correlations to prioritize and 

schedule maintenance tasks over a defined scheduling horizon. Figure 18 and 
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Figure 19 depict the heat maps illustrating the correlation between key transformer 

parameters, including voltage, winding temperature, THD, and load profile.  

 

Figure 18. Correlation heat map for key transformer 2 parameters 

 

Figure 19. Correlation heat map for key transformer 3 parameters 

The color scale in Figure 18 and Figure 19 ranges from -1 to 1, where values close to 

1 indicate a strong positive correlation (i.e., when one parameter increases, the other 

also tends to increase), values near -1 represent strong negative correlations (i.e., 

when one parameter increases, the other tends to decrease), and values around 0 

suggest weak or no correlation. These insights help in understanding which 

parameters contribute most to transformer degradation and guide maintenance 
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prioritization based on critical feature interactions. The weak correlations also 

indicate that maintenance planning should rely on a combination of multiple 

condition indicators rather than a single dominant factor. 

For Transformer 2, the heat map shows generally weak correlations among the 

features. The highest correlation observed is between voltage and winding 

temperature (0.0909), which suggests that voltage fluctuations have a slight 

impact on transformer heating. Similarly, THD and load profile exhibit a small 

correlation (0.0982), indicating that harmonic distortions may slightly increase with 

higher load levels. However, the overall low correlation values indicate that these 

features do not exhibit strong dependencies, suggesting that multiple 

independent factors influence transformer health and operational conditions. 

The final output of this step is the proposed maintenance schedule for the 

transformers under study. Figure 20 presents the smart maintenance optimization 

schedule for Transformer 2, while Figure 21 illustrates the corresponding schedule 

for Transformer 3. 

 

Figure 20. Smart Maintenance optimization schedule for transformer 2 
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Figure 21. Smart Maintenance optimization schedule for transformer 3 

For Transformer 2, the predictive maintenance tool identified and scheduled 

maintenance tasks within a 30-day optimization horizon. Tasks were prioritized 

based on asset-health evaluation combining transformer Health Index (HI), 

operational criticality, and correlation-weighted condition indicators (Voltage, 

Winding Temperature, THD, and Load Profile). A total of tasks was scheduled, 

predominantly classified as "Cooling System Maintenance," due to frequent 

winding temperature elevations beyond 95°C, indicating potential overheating 

risks. 

 

Similarly, for Transformer 3, the predictive tool recommended an equivalent 

number of maintenance tasks. These tasks also predominantly classified as 

"Cooling System Maintenance" were systematically prioritized and scheduled 

according to their HI scores, with transformers exhibiting lower HI values (below 

0.5) receiving higher urgency. The resulting schedule maintained a balanced 

distribution across the scheduling horizon, efficiently addressing transformers 

showing significant thermal stress indicators. 

 

The validation visualizations highlight the effectiveness of integrating predictive 

health modeling (HI-based), feature weighting through correlation, and adherence 

to operational constraints. This combined approach ensures that the assets 
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identified as most vulnerable to potential failures are proactively managed, thus 

enhancing system reliability and reducing unplanned outage risks. 

 

The correlation analysis preceding the optimization revealed relatively weak direct 

correlations among the individual transformer operational parameters. Despite 

these low correlations, the current approach leveraging a HI-based predictive 

model combined with operational criticality effectively compensates for the limited 

linear correlation among individual parameters. The optimization algorithm 

successfully prioritizes maintenance tasks by incorporating nonlinear relationships 

captured by the predictive model, operational importance (criticality), and specific 

fault-type indicators (e.g., elevated winding temperature, THD). Consequently, even 

though direct correlation values among raw parameters might be limited, the 

integrated predictive modeling framework ensures accurate identification and 

proactive scheduling of critical maintenance tasks, aligning effectively with 

operational constraints and transformer health conditions. 

2.2.2.4 Next Steps  

The next steps should focus on implementation, validation, and integration of the 

Smart Grid Maintenance tool within the project’s associated services and relevant 

pilot sites. The proposed action plan by the end of the task (i.e., M33) is the following: 

▪ Finalization of the Computational Framework based on available mandatory 

grid asset’s data and feedback from grid-level actors (especially DSOs/TSOs 

partners). Optimization models will be enhanced/modified to include grid 

constraints and operational flexibility. 

▪ Streamline a structured data exchange via the EVELIXIA Services Broker that 

enables seamless data extraction from IS15-iVN, in parallel with the grid modelling 

progress, to incorporate continuous asset health monitoring and predictive 

simulations. 

▪ Validation on Pilot Case Studies – The tool will be tested in the relevant project’s 

pilot sites to validate its predictive accuracy and maintenance optimization 

strategies, provided that real mandatory data is available. 
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3 EVELIXIA’S AUTONOMOUS DISTRICT DECISION 
SUPPORT FRAMEWORK 

The primary goal of network planning is to identify the most cost-effective 

investment strategy that meets the power transfer needs between energy sources 

and loads. Integrating renewable energy generation (REG), such as wind farms and 

solar power plants, into the grid often necessitates network investments while also 

accounting for environmental costs. Unlike conventional power plants, the 

operational characteristics of REG are highly variable and location-dependent, 

requiring adjustments or improvements to traditional network expansion 

methods.  

Distribution network planning involves determining the optimal location and size 

of substations and feeders. Integrating distributed generation (DG), such as solar 

and wind, into the distribution network can reduce active power losses and delay 

the need for new infrastructure investments. However, increased penetration of 

REG can lead to challenges like line overloading and voltage regulation issues. 

Traditionally, these issues have been addressed by building new circuits to expand 

network capacity, but this approach is often time-intensive, costly, and may not 

always be feasible due to space or regulatory constraints. As wind and solar power 

depend heavily on geographic conditions, certain parts of the grid may experience 

congestion and require upgrades to accommodate more REG connections.  

Modern approaches, such as active network management and advanced 

communication systems, can complement or replace traditional reinforcement 

strategies, offering solutions that are more flexible and cost-effective. 

As REG connections continue to increase, certain areas of a distribution network 

may experience issues such as nodal (bus) voltage violations and line overloading. 

However, constructing new circuits to accommodate REG can entail significant 

financial and environmental cost. 

Active network management schemes (such as enabling grid users’ flexibility) 

constitute technical levers available to system operators as an alternative to grid 

reinforcement, to deal with the changing congestion issues and voltage challenges 

faced by the local grid due to the mass arrival of decentralized generation facilities. 
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Distribution automation can be treated as a supplementary scheme to traditional 

primary asset investments; network investments can be reduced or deferred by 

deploying active network management. If flexibility resources are available within 

the network operation, the identified capacity needs can be resolved or 

significantly reduced through the utilization of such flexible resources. 

In light of this, the core objective of this task is to deliver tools that enable the 

identification of the minimum network investment scheme for the system 

operator satisfying the power transfer requirements from sources to loads, while 

also enabling the elimination of branches overloading by deploying active network 

management schemes. 

Towards this objective, the simulation capabilities of the iVN under tasks T4.3 (see 

Section 2.2.1) will be leveraged to create a set of decision-making and support 

services at the district/grid level, including Grid Investment Planning services (IS11), 

Multi-vector Network Management services (IS12) and Aggregated Demand 

Portfolio Management services (IS13), as depicted in Figure 22. These services focus 

on grid stakeholders (grid operators – at the DSO level, also involving synergies with 

energy aggregators, retailers, etc.), providing services from the Grid to the Building 

(i.e., energy consumers) that could mutually benefit both sides. 

 

Figure 22. Linkage of T4.3 and T4.4 towards EVELIXIA Autonomous District Digital 
Twin & Support Framework 

In Section 3, the key developments of Task 4.4 activities (Figure 23) are described, 

along with some preliminary results to showcase the functionalities of the tools 

(described in detail in Section 3.2).   
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Figure 23. Methodology of T4.4 EVELIXIA services implementation. Inputs/Outputs are 
referred to T4.4 

3.1 Introduction 

Multivector energy systems refer to integrated energy systems that utilize various 

energy carriers—such as electricity, heat, hydrogen, and biofuels—interconnected 

within a single framework. These systems aim to optimize energy production, 

storage, and consumption by efficiently coordinating different forms of energy to 

enhance overall performance, reliability, and sustainability. Simulation and 

optimization of multivector energy systems requires sophisticated techno–

economic tools that are capable of modelling buildings and distributed energy 

resources (DERs) across multivector energy networks. Towards this, the IS15 – iVN 

multi-vector grids energy modelling capabilities (see Section 2.2.1) will be leveraged 

for the enhancement of the Innovative Solutions developed under Task 4.4 

activities, thus enabling automated decision-making for holistic system planning, 

operation, and maintenance across buildings and grid levels. Given that at this 

phase of the project the  multi-vector grids modelling in Task 4.3 is under 

development, the focus of the ISs under Task 4.4 (Section 3) is shifted towards the 

flexibility of the electricity distribution grid (mainly focusing on local congestion 

management via distribution grid related services) without compromising the 

increasing interdependence among the different energy vectors at the distribution 

level (i.e., electricity, district heating, and natural gas systems). Thus, the proposed 
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framework (Figure 23) enables the synergy of the different system operators, which 

is not the case in the current state of the deregulated energy commodities market4. 

3.2 Autonomous District Digital Twin – Solution Design 
Overview 

Task 4.4 aims to create develop and implement three discrete yet cooperative 

Innovative Solutions (ISs): 

▪ Grid Investment Planning Assistant Service (IS11): Supporting long-term system 

planning for local grid operators’ (e.g., DSOs) based on proactive identification of 

future bottlenecks, assessing the necessity of potential interventions and 

evaluating in terms of economic benefit (direct investment profits from network 

enhancements) and economic viability. Performs a Cost-Benefit Analysis (CBA) to 

compare different grid investment scenarios. 

▪ Multi-Vector Energy Network Manager Service (IS12): Targeting grid operators 

(e.g., DSOs), enables services at the grid level (focusing on local congestion 

management via flexibility-based solutions), without violating operational bounds 

of the different energy networks. 

▪ Aggregated Demand Portfolio Manager Service (IS13): Targeting Aggregators 

applies real-time daily portfolio replanning/rescheduling at an aggregated building 

and district scale, to enable proactive resources (demand flexibility) aggregation 

and allow active participation in energy balancing markets (focusing on the 

electricity vector). 

 

These ISs are presented in detail in the following subsections. 

3.2.1 Grid Investment Planning Assistant (IS11) 

The Grid Investment Planning Assistant (GIPA) is a decision-support tool designed 

to evaluate current and future network bottlenecks and assess the economic 

viability of potential grid infrastructure upgrades. It provides a structured and 

quantitative approach for investment planning at the grid level, incorporating a 

 
 
 
4 The heating market is far less competitive and mature than the power and natural gas 
market, and the market clear cycles of electricity and natural gas markets are different. 
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detailed CBA based on the ENTSO-E CBA guidelines to compare different 

strategies such as network reinforcement, active network management, and DER 

integration. 

The tool supports DSOs and policymakers in making informed, cost-effective, and 

sustainable investment decisions, by considering technical constraints, other 

constraints (such as geographic limitations, regulatory requirements), and socio-

economic factors. It enables comprehensive economic feasibility evaluations of 

different grid reinforcement strategies, including traditional upgrades (e.g., new 

line installations, substation expansion, transformer replacement) and smart grid 

solutions (e.g., SCADA upgrades, demand response mechanisms, grid-scale energy 

storage).  

GIPA extracts the necessary input data from the Multi-Vector Grids Energy 

Modelling & Simulation solution (IS15), vector congestion forecasting, and capacity 

building analysis from RES and storage integration, i.e., assessment of the energy 

system’s ability to accommodate and optimize the integration of RES and storage 

technologies over time. 

The tool incorporates technical, economic, and environmental dimensions to 

assess the long-term projected district-level scenarios, to ensure that multi-grid 

modernization strategies meet the challenges of increasing electricity demand, 

renewable penetration, and grid reliability while maximizing economic benefits 

and ensuring efficient allocation of resources via various grid upgrade scenarios. 

3.2.1.1 Objectives 

IS11 - Technical Objective "TRL5 to TRL7": Originally validated in the relevant 

environment of several past EU-funded projects (e.g. IANOS GA No.  957810) GIPA 

is introduced to EVELIXIA at Technology Readiness Level (TRL) 5. Advancing 

towards TRL6, a working version of IS11 is tested in a simplified, small-scale network 

based on the IEEE 33 bus radial distribution system, as it is further described in 

Section 3.2.1.3. The final version of the GIPA will undergo validation using simulation 

data generated by IS15 - intelligent Virtual Network – iVN (Section 2.2.1), ensuring 

applicability to each pilot site network under study. As part of EVELIXIA’s platform 

integration, progressing towards TRL 7 until the end of the project, future efforts 

and refinements of the tool target demonstration of the technology across 
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EVELIXIA pilot sites, thus ensuring its applicability in real-world grid investment 

planning and decision-making. 

IS11 - Scientific Objective: Economic valuation & monetization of grid investment 

scenarios. GIPA enables the quantification and monetization of investment 

benefits across EVELIXIA’s pilot sites, providing economic assessment indicators 

(i.e., Net Present Value (NPV) and Benefit-Cost Ratio (BCR)). GIPA employs a multi-

layered methodology that identifies grid-level investments that maximize 

economic, environmental, and by extension, social value (Section 3.2.1.2). 

3.2.1.2 Methodology 

GIPA follows a structured methodology for evaluating grid investment scenarios by 

integrating CBA principles based on the ENTSO-E CBA guidelines [10], [11]. The 

process ensures a comprehensive evaluation of grid upgrade options, monetization 

of benefits, and cost assessments to determine the most viable investment 

pathway. 

Tailoring the workflow to the needs of EVELIXIA (Figure 24) the methodological 

approach breaks down into two core features, the Scenario Analysis and the CBA. 

The evaluation of existing/future bottlenecks derives as the output of the 

simulation engine (i.e., EVELIXIA district DT) and contributes to assessing the 

necessity for infrastructure interventions/investments (network-specific KPIs that 

will serve the benefit monetizing phase of the CBA), providing the required inputs 

from the end-user (i.e., the targeted users, e.g., the grid under study operations), via 

the EVELIXIA platform. The methodology further employs: 

• Multi-Criteria Investment Assessment, in the sense that upgrade 

investments are evaluated based on multiple KPIs, reflecting technical 

performance and environmental indicators towards socio-economic welfare 

Thus, the tool provides a structured decision-making process for network 

expansion and optimization. 

• DER Grid Integration, assessing the economic feasibility of integrating 

variable RES and storage as cost-effective solutions to mitigate challenges 

such as congestion, curtailment, and voltage violations. 

• Scenario-Based Grid Planning, enabling the comparison of different 

investment strategies by simulating multiple grid upgrade scenarios. 



 

EVELIXIA – D4.3 EVELIXIA Autonomous District Digital Twins 51 

• Environmental and Social Impact Considerations, incorporating carbon 

footprint reduction, grid resilience improvements, and social benefits (e.g., 

improved service reliability), which aligns with EU regulatory frameworks 

and climate goals for sustainable energy infrastructure. 

• Uncertainty Planning, via parametric analysis to assess investment risks 

under varying future conditions, such as changing energy prices, policy shifts 

and regulatory changes, demand growth and peak load variations, 

renewable energy penetration levels). 

 

 

Figure 24. Grid Investment Planning Assistant (GIPA) workflow 

Scenario Analysis 

The grid upgrade options (Figure 24) are defined based on projected estimates of 

system needs, identifying necessary interventions to support renewable energy 

integration, congestion management, and grid flexibility enhancement. Various 

upgrade options relevant for the EVELIXIA scope and objectives are to be 

considered, aligned with system operators’ best practices, including but may not 

limited to advanced SCADA and control system upgrades, new substations and 

grid reinforcements, grid-scale BESS, and reconductoring or capacity expansion of 

existing lines. Each upgrade scenario is assessed based on its technical and 

operational role, evaluating how interventions contribute to improving grid 

flexibility, stability, and resilience. This assessment involves mapping elements and 

assets to specific functionalities, (e.g., congestion mitigation), while also translating 

these functionalities into quantifiable benefits. These benefits are categorized into 

economic aspects, including cost savings and deferred investments in grid 
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reinforcement, environmental improvements, such as CO₂ emissions reduction 

and better renewable energy utilization, and operational enhancements, including 

voltage stability, reduced congestion, and improved system reliability. 

The load flow analysis (Figure 24) serves as a critical step in evaluating the baseline 

network conditions and the impact of proposed grid upgrades. In the EVELIXIA 

framework, this analysis is conducted through the District Digital Twin, 

implemented within IS15-iVN, which enables a detailed assessment of grid 

performance under current and projected conditions. The baseline simulation 

provides insights into existing grid constraints, voltage deviations, and risks of 

network overloading, particularly under anticipated demand growth and 

increasing renewable energy penetration. 

 

Following this, the selected upgrade scenarios (relevant for each application case 

within the EVELIXIA, according to the involved stakeholders’ feedback) are 

integrated into the simulation model to analyse their effectiveness in addressing 

the observed bottlenecks. By running power flow simulations under different 

intervention strategies, the model quantifies the improvements in grid stability, 

congestion relief, and renewable hosting capacity. 

 

To systematically evaluate the benefits of each upgrade scenario, a set of Key 

Performance Indicators (KPIs) is defined, measuring key aspects of grid operation. 

These indicators provide a quantitative basis for comparing different grid upgrade 

strategies. Table 1 summarizes a provisional KPIs list related to grid operation and 

performance and their respective calculation formulas [12], [13]. This KPI list will be 

updated upon integration of the EVELIXIA platform and refined according to the 

site-specific needs of respective grid-level actors. The final KPIs will be based on 

calculations performed in the simulation engine, based on the grid-level 

stakeholders input data and feedback.  
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Table 1. Provisional KPIs list related to grid operation and performance and 

their respective calculation formulas   

KPI Description Formula Unit 

Energy 

Curtailment 

Reduction 

Reduction in 

curtailed energy 

due to grid 

investment or 

flexibility 

solutions. 

ΔC=Ecurt,base−Ecur,investment 

 

Ecurt,base = Total curtailed energy under the 

baseline scenario (MWh/year). 

Ecurt,investment = Total curtailed energy after grid 

investment (MWh/year). 

MWh/year 

Energy Loss 

Reduction 

Reduction in 

transmission and 

distribution 

losses due to grid 

reinforcement. 

ΔE=Eloss,base−Eloss,investment 

 

Eloss,base = Total annual energy losses under 

the baseline scenario (MWh/year). 

Eloss,investment = Total annual energy losses after 

grid investment (MWh/year). 

MWh/year 

System Load 

Factor 

Improvement 

Improvement in 

the ratio of 

average to peak 

load, indicating 

better grid 

utilization. 

𝐿𝐹 =
Average Load

Peak Load
𝑥 100% 

 

LF : load factor (%). 

Average Load: mean power demand over a 

given period (MW). 

Peak Load: maximum power demand 

observed in that period (MW). 

 

𝐿𝐹 𝐼𝑚𝑝𝑟𝑜𝑣𝑚𝑒𝑛𝑡 =
𝐿𝐹𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡−𝐿𝐹𝑏𝑎𝑠𝑒

𝐿𝐹𝑏𝑎𝑠𝑒
𝑥 100% 

 

LFinvestment : Load Factor after grid upgrade or 

flexibility intervention. 

LFbase: Load Factor under the baseline 

scenario. 

% 

CO₂ Emissions 

Avoided 

Reduction in 

emissions due to 

increased 

renewable 

integration and 

reduced fossil-

 

𝐶𝑂2 𝐴𝑣𝑜𝑖𝑑𝑒𝑑 =∑[𝐸𝑅𝐸𝑆,𝑢𝑠𝑒𝑑𝑥(
𝐹𝑓𝑜𝑠𝑠𝑖𝑙

𝐹𝑡𝑜𝑡𝑎𝑙
)𝑥 𝐸𝐹𝑔𝑟𝑖𝑑] 

 

ERES,used: additional renewable energy utilized 

due to the intervention (MWh). 

tons 

CO₂/year 
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based 

generation. 

Ffossil: amount of fossil fuel-based electricity 

generation (in MWh). 

Ftotal: total electricity generated in the grid (in 

MWh). 

EFgrid: average CO₂ emission factor of the grid 

(in tons CO₂/MWh). 

Grid 

Congestion 

Relief 

(Percentage 

Reduction) 

Reduction in 

congestion levels 

on network 

assets (e.g., 

transformers, 

lines) after 

implementing a 

flexibility or 

reinforcement 

measure. 

|𝐻𝑏𝑎𝑠𝑒| − |𝐻𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡|

|𝐻𝑏𝑎𝑠𝑒|
× 100% 

 

Hbase: hours per year when network elements 

exceed a predefined congestion threshold 

(e.g., 80%-line loading) before intervention. 

Hinvestment: hours per year when network 

elements exceed the threshold after 

intervention. 

% 

Voltage 

Stability 

Improvement 

Reduction in 

voltage 

deviations from 

nominal levels at 

key network 

nodes. 

|𝑉𝑏𝑎𝑠𝑒| − |𝑉𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡|

|𝑉𝑏𝑎𝑠𝑒|
× 100% 

 

Vbase: maximum voltage deviation before 

intervention (pu). 

Vinvestment: maximum voltage deviation after 

intervention (pu). 

% 

 

Cost-Benefit Analysis 

The objective of the CBA process is to quantify the costs and benefits associated 

with a proposed intervention in measurable terms, ensuring that investment 

decisions are financially sound. The analysis includes both direct financial impacts 

and monetized values of non-monetary benefits such as environmental 

improvements and system reliability. 

The first step involves defining the cost components. Once the baseline and 

intervention cases are established, the cost quantification incorporates Capital 

Expenditure (CAPEX)—covering infrastructure deployment, grid expansion, RES 

and storage investments—as well as Operational Expenditure (OPEX) for 
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maintenance and monitoring. Additionally, Environmental Costs related to 

emissions or sustainability concerns are factored in. 

The expected benefits are monetized to reflect their economic value. This includes 

for example converting deferred transformer or substation expansion into avoided 

network upgrade costs, lower energy losses into reduced operational expenditure, 

congestion management into avoided curtailment costs, etc. Similarly, enhanced 

system reliability is translated into avoided downtime costs, while reduced CO₂ 

emissions and improved energy efficiency are monetized using standardized 

carbon pricing metrics (such as €/ton of CO₂ avoided), derived from carbon taxation 

schemes or emissions trading systems (ETS). At this stage, the analysis also 

identifies the key beneficiaries, which may include TSOs, DSOs, consumers, 

policymakers, and renewable energy investors.  

The financial viability of the investment is then determined through standard 

economic performance metrics. The Net Present Value (NPV) is computed by 

summing the discounted monetary benefits and subtracting the discounted costs 

over the project’s lifetime, with a positive NPV indicating a financially attractive 

investment. The Benefit-Cost Ratio (BCR) is calculated by dividing the total present 

value of benefits by the total present value of costs, with a BCR greater than one 

signifying a viable and justifiable investment [11]. 

To account for uncertainties and risks, GIPA incorporates will evaluate the impact 

of the variation in key parameters from the scenario analysis for grid upgrades 

stage (Figure 24) that serves as input to the CBA, assessing the robustness of 

investment decisions under varying conditions, including but not limited to the 

impact of demand growth variations (which affect electricity consumption and grid 

constraints), market price fluctuations (which influence investment profitability), 

and renewable energy penetration (which alters the need for flexibility solutions). 

Furthermore, regulatory and policy changes—such as new incentive mechanisms, 

evolving market rules, or adjustments in CO₂ pricing—should be also considered to 

enhance decision-making resilience and adaptability to future grid conditions. 
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CBA Formulation – Parameters and Definitions 

The static/dynamic input data in the formulation that follows are provided 

requested by the interested users of GIPA and extracted from IS15-iVN. 

Net Present Value (NPV):  The NPV is the monetary amount of the change in the 

value of the energy infrastructure due to selecting and applying one or more 

interventions according to the business objectives set by the involved stakeholders. 

A positive NPV suggests a profitable investment. The NPV is calculated by 

summing the present values of all benefits and subtracting the present values of 

all costs: 

𝑁𝑃𝑉 = ∑
(𝐵𝑡− 𝐶𝑜𝑝,𝑡−𝐶𝑒𝑛𝑣,𝑡)

(1+𝑟)𝑡
𝑇
𝑡=1 − 𝐶𝑒𝑛𝑣,𝑒𝑚𝑏𝑜𝑑𝑖𝑒𝑑 − 𝐶𝑒𝑛𝑣,𝐸𝑜𝐿 − 𝐶𝑖𝑛𝑣                                 Eq. 3.2.1.1 

where: 

Bt: Benefits in year t, resulting from energy savings, reliability improvements, 

demand response optimization, and other grid-related enhancements:                                                         

       𝐵𝑡 = 𝐵𝑒𝑛𝑒𝑟𝑔𝑦,𝑡 + 𝐵𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦,𝑡 + 𝐵𝐷𝑅,𝑡 + 𝐵𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡,𝑡 + 𝐵𝑜𝑡ℎ𝑒𝑟,𝑡                    Eq. 3.2.1.2 

where Benergy,t can be expresses as the sum of  

Grid Losses Avoidedt
5 ×Electricity Pricet

6
 and any Generated  Revenuet

7 , Breliability,t8 

can be calculated as the sum of SAIDI9 Reductiont×VoLL10 and SAIFI11 Reductiont × 

Outage Cost per Event 12 , BDR,t (where relevant for involved stakeholders in the 

study) can be calculated via the sum of Peak Demand Reductiont

13 ×Capacity Market Price 14  and DSO/ TSO  Flexibility Paymentt
15 , Bcurtailment,t term 

 
 
 
5 Grid Losses Avoided account for reduction in MWh of energy losses due to grid efficiency 
improvements. 
6 Electricity Price is the cost of energy per MWh (e.g., wholesale market price). 
7 This term is applicable in cases of generated revenue streams, e.g., any revenue from 
charging/discharging storage via arbitrage mechanism at different price periods.  
8  This term refers to the case that grid investments directly reduce outage frequency; 
alternatively, this applies only to flexibility solutions. 
9 SAIDI is the System Average Interruption Duration Index (in hours). 
10  VoLL is the Value of Lost Load, i.e., the economic loss per MWh of unserved energy 
(€/MWh). 
11 SAIFI is the System Average Interruption Frequency Index. 
12 Economic impact per outage event (€). 
13 Reduction in MW of peak demand. 
14 Payment per MW of capacity reduction. 
15 Compensation from DSO/TSO for DR services. 
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coresponds to Avoided Curtailmentt×Market Price of RESt and finally Bother,t refers 

to Other Market Revenues (e.g., CO₂ credits – i.e., revenue from carbon trading, 

ancillary services revenue – payment from TSOs for grid support, voltage regulation 

benefit – economic savings from better voltage stability, and other).  

In Eq. 3.2.1.2, it should be noted that the benefits can vary by scenario (e.g., BESS 

might contribute more to arbitrage, while a new transformer mainly reduces 

curtailment and reliability costs, etc.). Also, some benefits (e.g., avoided curtailment) 

may increase over time with RES penetration, while Bt (when used in NPV) is 

discounted over time. Finally, the Eq. 3.2.1.2 formula is expressed in its most general 

form, making it universally applicable to all relevant scenarios; this depends on the 

specific interventions, their impact and the beneficiaries (stakeholders) – e.g., third-

party BESS aggregators might receive ancillary payments, but DSOs might not). 

Thus, for practical studies, each benefit source is matched to the stakeholder who 

receives it. However, they are included in this part for the completion of the analysis.  

Cop,t: Operational Expenditure (OPEX) in year t, including expenses incurred to 

maintain the investment over time. Represents yearly operational and 

maintenance costs (e.g., BESS degradation, transformer maintenance, SCADA 

system upkeep, and grid monitoring). 

Cenv,t: Environmental costs in a year t due to operational emissions and energy 

losses.  

𝐶𝑒𝑛𝑣,𝑡 =  𝐶𝑂2 𝑐𝑜𝑠𝑡 𝑥 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑡 + 𝐸𝑛𝑒𝑟𝑔𝑦 𝐿𝑜𝑠𝑠𝑒𝑠𝑡  𝑥 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡     Eq. 3.2.1.3 

where  

• CO₂ cost: the static price of CO₂ emissions per ton (€/ton), as set by carbon 

markets (EU ETS) or regulatory frameworks  

• CO2 emissionst: the annual operational carbon emissions in year t (toneq) 

• Energy Lossest: the energy losses associated with increased transmission 

and distribution losses (MWh) due to inefficient power flows 

• Energy Cost: the static market price of imported or exported electricity 

depending on the scenario (€/MWh) 

Cenv,embodied: Environmental costs due to embodied energy and emissions 
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𝐶𝑒𝑛𝑣,𝑒𝑚𝑏𝑜𝑑𝑖𝑒𝑑 =   𝐶𝑂2 𝑒𝑚𝑏𝑜𝑑𝑖𝑒𝑑 𝑥 𝐶𝑂2 𝑐𝑜𝑠𝑡 + 𝑃𝐸𝐷 𝑒𝑚𝑏𝑜𝑑𝑖𝑒𝑑 𝑥 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡                

Eq. 3.2.1.4 

• CO₂ embodied: the emissions embodied in component 𝑗 (toneq) associated 

with the manufacturing, transportation and installation of the component 

(Stage A of its lifetime) 

• PED embodied: the embodied energy (MWh) during the production, 

transportation, and installation of components (Stage A of its lifecycle) 

Cenv,EoL: Environmental costs due to End-of-Life energy and emissions 

𝐶𝑒𝑛𝑣,𝐸𝑜𝐿 =   𝐶𝑂2𝐸𝑜𝐿 𝑥 𝐶𝑂2 𝑐𝑜𝑠𝑡 + 𝑃𝐸𝐷𝐸𝑜𝐿 𝑥 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡          Eq. 3.2.1.5 

• CO₂EoL: the emissions generated during the disposal treatment, and final 

fate of a product at the end of its useful life 

• PEDEoL: the primary energy (MWh) required for the disposal, treatment, and 

final fate of a product at the end of its useful life. 

In case of lack of input data for the calculation of the 𝐶𝑒𝑛𝑣,𝑒𝑚𝑏𝑜𝑑𝑖𝑒𝑑 (Eq. 3.2.1.4) and the 

𝐶𝑒𝑛𝑣,𝐸𝑜𝐿 (Eq. 3.2.1.5) of district-level energy carriers (generators, storage, power plants, 

charging stations, transformers) (e.g., aggregators, operators, manufacturers) key 

static information will be sourced from the Lifecycle Inventory (LCI) provided by 

CERTH/CPERI. 

Cinv: Initial investment costs, i.e. CApital Expenditure (CAPEX), including 

infrastructure upgrades (e.g., BESS deployment, reconductoring, SCADA, new 

substations, etc.). Investment costs include all the upfront expenditure required to 

implement the grid intervention: 

𝐶𝑖𝑛𝑣 = ∑ (𝐶𝑒𝑞𝑢𝑖𝑝,𝑖 + 𝐶𝑖𝑛𝑠𝑡𝑎𝑙𝑙,𝑖)
𝑁
𝑖=1                                                                                           Eq. 3.2.1.6 

where Cequip,i is the equipment cost for asset i (e.g., BESS, transformer, etc.), Cinstall,i is 

the installation and commissioning cost of asset i, and N is the total number of grid 

assets in the investment. 

r: Discount rate applied to future costs and benefits. The discount rate reflects the 

time value of money and investment risk, typically based on the project's cost of 

capital, risk profile, inflation, market conditions, and industry standards. In energy 
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projects, regulated entities use lower rates (3%-7%) for societal benefits [14], while 

private investors apply higher rates (8%-12%) to meet return expectations [15]. 

t: The project’s time horizon, typically in the range of a 10-, 20- or 30-years horizon. 

It is important to note that the duration in years is defined by the interested 

stakeholder/site operator/aggregator etc. for each set of scenarios. 

Benefit-Cost Ratio (BCR): The BCR is the ratio of the present value of benefits to the 

present value of costs. A BCR greater than 1 indicates an economically viable 

investment (as already mentioned), meaning the benefits outweigh the costs. BCR 

is computed by dividing the total present value of benefits by the total present 

value of costs: 

𝐵𝐶𝑅 =  
∑

𝐵𝑡
(1+𝑟)𝑡

𝑇
𝑡=1

𝐶𝑖𝑛𝑣 +𝐶𝑒𝑛𝑣,𝑒𝑚𝑏𝑜𝑑𝑖𝑒𝑑+𝐶𝑒𝑛𝑣,𝐸𝑜𝐿+ ∑
𝐶𝑜𝑝,𝑡+𝐶𝑒𝑛𝑣,𝑡

(1+𝑟)𝑡
𝑇
𝑡=1  

                                           Eq. 3.2.1.7                                                  

where the numerator accounts for the present value of all benefits over the project 

lifetime, while the denominator is the sum of the initial investment, the present 

value of operational and associated environmental costs over the project lifetime. 

3.2.1.3 Evaluation & Results 

Given that at the current stage of the project the grid modeling is under 

development, a preliminary test-run is set up in an alternative software 

environment to validate the tool's functionality and performance. Specifically, the 

GIPA methodology is initially tested in a modified, small-scale IEEE 33-bus test 

system [16] developed in MATLAB R2024a, reduced to a 5-bus network (test system) 

that represents a simplified distribution network operated at the DSO level, to 

evaluate investment decisions in grid reinforcement and congestion management. 

This test-run serves as a validation of the methodology, which aims to assess the 

cost-effectiveness of network upgrades while considering KPIs such as voltage 

stability, transformer loading, and grid losses. In addition, due to lack of a real-world 

case study at this phase, the applicability of the tool has been tested via simplified 

formulas, based on the methodology of Section 3.2.1.2. The power flow model was 

developed in MATPOWER v8.0 [17] ensuring accurate AC power flow calculations. 

Overall, this test-run is a means of verifying that the CBA methodology is 

successfully integrated with the Scenario Analysis and the power flow stages of the 

proposed workflow in Figure 24. 
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In this case study, a new grid line addition is evaluated against a Business-as-Usual 

(BaU) case, quantifying NPV and BCR under different discount rates and demand 

growth assumptions. The test system consists of five representative buses based 

on key grid characteristics: Bus 1 being the slack bus (primary substation), Load Bus 

2 (e.g., medium-sized load center – 5 MW), Load Bus 3 (e.g., industrial or commercial 

load center – 8 MW), Load Bus 4 (e.g., residential or mixed-use load center – 3 MW) 

and Generation Bus 5: Renewable energy injection (e.g., distributed solar or wind, 

– 10 MW exports). Annex 1 (Section 6.1) includes the MATPOWER implementation of 

the modified IEEE 33-bus test system, adapted for the analysis. 

The BaU case refers to the state of the grid under study when no new infrastructure 

investment is made, and the existing network continues to operate under its 

current conditions. Under this case, the grid experiences significant operational 

inefficiencies, including high transformer loading, increased voltage deviations, 

and considerable grid losses. These inefficiencies contribute to increased 

operational and environmental costs, primarily due to excessive energy losses and 

the associated carbon footprint. 

The investment scenario under study, referred to as the New Line Addition, involves 

a targeted grid reinforcement measure in which a new transmission line is installed 

between Bus 3 and Bus 5. This intervention is expected to reduce congestion, 

enhance voltage stability, and lower transformer loading, thereby improving overall 

grid reliability.  

Technical Performance Evaluation 

To evaluate the effectiveness of this investment, after running the power flow 

simulations for both scenarios, the quantitative results are mapped into specific 

KPIs (based on Table 1). The new line addition resulted in a 40% reduction in voltage 

deviation, decreasing from 0.05 per unit (pu) in the BaU scenario to 0.03 pu, while 

the reinforcement led to a 23% decrease in transformer loading, lowering it from 

98% to 75%, thus alleviating stress on network assets and improving the longevity 

of infrastructure components. Grid losses, a major source of inefficiency, were also 

significantly reduced. In the BaU case, annual grid losses amounted to 3.5 MWh, 

whereas the introduction of the new line reduced them to 1.8 MWh, marking an 

improvement of approximately 48.5%. These technical benefits are translated into 
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economic savings, primarily through reduced operational and environmental costs. 

These results are depicted in Figure 25. 

 
Figure 25. Power flow results for the 5-bus system under study: Technical and 

economical-environmental metrics 

The evaluation of these scenarios for the test-run is based on real-world economic 

and environmental assumptions. The cost of implementing this reinforcement is 

estimated at €5 million, covering CAPEX related to equipment, installation, and 

commissioning. Additionally, OPEX for maintenance is assumed to be €300,000 

per year, reflecting the costs associated with routine inspections and upkeep of the 

newly installed infrastructure [18]. Furthermore, the cost of energy losses was 

assumed to be €100 per MWh, a value derived from historical electricity market 

prices within the European Power Exchange (EPEX Spot) [19]. Additionally, CO₂ 

emissions were estimated using an average grid emission factor of 0.3 tons CO₂ per 

MWh [20] reflecting the energy mix of the European electricity sector. The carbon 

pricing used for monetizing environmental costs was €90 per ton of CO₂, based on 

the prevailing rates within the European Emissions Trading System (EU ETS) [21]. 

To assess the financial feasibility of the investment, a range of discount rates was 

considered, representing different potential financing conditions. Three values 

were selected for parametric analysis: 8%, 10%, and 12%, corresponding to low-risk, 

standard, and high-risk investment environments, respectively. Moreover, 

variations in demand growth were incorporated into the analysis, with annual 
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growth rates of 0.5%, 1.5%, and 3%, reflecting different scenarios of energy 

consumption evolution and grid utilization. 

Financial Analysis 

The financial evaluation of the investment was conducted using NPV and BCR 

calculations based on Eq. 3.2.1.1 and Eq. 3.2.1.7 respectively, for a time horizon of 20 

years [11]. The results are presented in Figure 26.  

 
Figure 26. Financial Analysis for the 5-bus system test-case: Impact of Discount Rate 

and Demand Growth on NPV and BCR calculations 

For the New Line Addition scenario, the NPV was calculated at €2.17 million for a 

discount rate of 10%, indicating that the investment yields a positive economic 

return over its lifetime. A parametric analysis was performed to assess the impact 

of varying discount rates (8%, 10%, 12%) and demand growth projections (0,5%, 1.5%, 

3%). The results showed that under a higher demand growth of 3% per year, the 

NPV could reach €3.12 million, suggesting greater economic benefits under 

scenarios of increasing electricity consumption. Conversely, under a higher 

discount rate of 12%, the NPV decreased to €1.55 million, highlighting the negative 

effect of higher financing costs on investment feasibility. 

For the New Line Addition, the BCR was 1.3 million for a discount rate of 10%, 

indicating that the benefits outweigh the costs, making the investment 

economically justifiable. The parametric analysis revealed that under a higher 
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demand growth scenario, the BCR increased to 1.39, while for a higher discount rate 

scenario, the BCR declined to 1.23. These findings suggest that investments in grid 

reinforcement become increasingly attractive in environments with growing 

electricity demand and stable financing conditions. 

This initial test-run under a mock-up scenario validates the applicability of the GIPA 

methodology in assessing the impact of grid investments, given the provided 

inputs (Figure 24). Future applications of this methodology will be extended to real-

world distribution networks and potential investment scenarios within the scope 

of the project, ensuring that grid planning aligns with the evolving energy 

landscape and regulatory frameworks across site via the EVELIXIA platform. 

3.2.1.4 Next Steps 

The next steps should focus on implementation, validation, and integration of GIPA 

within the project’s associated services and relevant pilot sites. The proposed action 

plan by the end of the task (i.e., M33) is the following:  

▪ Finalize the GIPA computational framework and refine the KPI list (Table 1), 

based on feedback from DSOs/TSOs partners.   

▪ Streamline a structured data exchange via the EVELIXIA Services Broker that 

enables seamless data extraction from IS15-iVN, in parallel with the grid modelling 

progress and power flow simulations. 

▪ Iteratively engage with grid-level actors, including system operators and 

aggregators, to co-define scenario development and parameter definition. 

3.2.2 Multi-vector Network Manager (IS12) 

Background & Motivation 

The primary motivation for network users to provide flexibility to the grid through 

Demand Response (DR) mechanisms lies in the financial incentives offered by 

network operators. These incentives typically take the form of cost reductions or 

reimbursements for adjusting energy consumption or production in response to 

grid needs. DR mechanisms can be categorized into two main approaches [22], [23], 

[24]: 
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▪ Explicit Demand Response – In this approach, the DSO offers direct financial 

incentives to consumers (e.g., bill reductions) and establishes contracts that require 

them to adjust their energy consumption or generation according to the DSO’s 

signals. This enables direct congestion management by ensuring that consumers 

actively modify their energy usage in response to grid needs. 

▪ Implicit Demand Response – This approach relies on Time-of-Use (ToU) tariffs to 

encourage consumers to shift their energy consumption to off-peak hours. These 

tariffs are designed to reflect consumption and generation patterns at the 

distribution network level, motivating users to modify their energy behavior based 

on price signals. Network operators, often in collaboration with National Regulatory 

Authorities (NRAs), may require electricity providers to align end-user costs with 

distribution grid benefits and overall system efficiency. Unlike explicit DR, implicit 

DR influences consumer behavior indirectly, helping to alleviate grid stress and 

optimize network utilization. 

The MvNM tool is developed to support system operators in leveraging the 

flexibility potential of Distributed Energy Resources (DERs) and buildings to 

enhance grid planning and operations. By integrating an optimization framework, 

the tool enables system operators to dynamically manage DR mechanisms, 

reducing reliance on conventional grid reinforcement strategies and enhancing 

the efficiency of congestion management, energy balancing, and reserve allocation 

[25], [26], [27], [28]. 

Figure 27 illustrates the concept of the MvNM tool integration with the District 

Digital Twin of EVELIXIA ecosystem. 
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Figure 27. MvNM tool integration with the District Digital Twin of EVELIXIA ecosystem 

The main idea of the tool supports optimization for both explicit and implicit 

demand response strategies. In explicit demand response, the DSO provides direct 

financial incentives to consumers in exchange for adjusting their energy usage in 

response to grid constraints or economic signals. In implicit demand response, ToU 

tariffs are designed to influence consumption patterns by encouraging end-users 

to shift their electricity usage to off-peak hours. Through these strategies, the 

MvNM tool facilitates an adaptive and cost-efficient approach to managing energy 

demand and supply while minimizing the need for renewable energy curtailment. 

However, for the purpose of the EVELIXIA project, the optimization framework of 

the tool only focuses on explicit demand response, in the sense that the DSO will 

eventually design and send cost-effective DR activation signals. 

By incorporating a flexible optimization structure, the tool allows operators to 

evaluate and implement the most efficient flexibility allocation for different time 

horizons, including mid-term (daily) and long-term (monthly) grid balancing needs. 

This approach ensures that DER flexibility is utilized in an economically and 

operationally efficient manner, allowing the grid to maximize renewable energy 

integration while maintaining system stability. 
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3.2.2.1 Objectives  

IS12 - Technical Objective "TRL5 to TRL7": With original functionalities developed 

and validated in the relevant environment of several past EU-funded projects (e.g. 

ONENET GA No. 957739 and MASTERPIECE GA No. 101096836), MvNM is introduced 

to EVELIXIA at Technology Readiness Level (TRL) 5. Advancing towards TRL6, a 

working version of IS12 is tested in a simplified medium-voltage (MV) distribution 

grid of the Greek pilot as it has been described in Section 2.2.1.3 but built in 

MATLBA/Simulink environment, as it is further described in Section 3.2.2.3. The final 

version of the MvNM will undergo validation using simulation data generated by 

IS15 - "intelligent Virtual Network" (iVN) (see Section 2.2.1), ensuring applicability to 

each pilot site network under study. As part of EVELIXIA’s platform integration, 

progressing towards TRL 7 until the end of the project, future efforts and 

refinements of the tool target demonstration of the technology across EVELIXIA 

pilot sites, thus ensuring its applicability in balancing demand and supply without 

violating operational bounds of the different energy networks in real-world market 

designs and congestion management schemes. 

IS12 - Scientific Objective: The MvNM tool is designed to optimize DR signals and 

leverage available flexibility resources (i.e., upward and downward power shifts on 

a daily basis), to support energy balance while minimizing the need for renewable 

energy curtailment, through cost-efficient strategies from the system operator 

side. The objectives of the MvNM tool are translated into functional goals that guide 

the tool’s operation and optimization framework. These are outlined as follows: 

▪ Shifting Towards Dynamic Grid Management and Tariff Design: Traditional 

long-term grid investment plans are no longer sufficient to address the dynamic 

challenges of modern distribution networks. The MvNM tool enables a shift towards 

more adaptive and flexible grid management practices by optimizing flexibility 

over short-term planning horizons, such as daily and monthly timescales. By 

incorporating short-time congestion management strategies, it enhances cost-

reflective decision-making, supporting the development of adaptive tariffs and 

incentive mechanisms that align with E.DSO recommendations [29]. These 

mechanisms ensure that the cost of flexibility is accurately reflected in pricing 

structures, encouraging efficient energy consumption and network use. 
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▪ Enhancing Operational Efficiency: By providing DSOs with data-driven decision 

support, the tool enhances the overall efficiency of the distribution network. It 

optimizes the use of distributed flexibility to reduce the reliance on expensive 

infrastructure reinforcements, allowing for smarter and more sustainable grid 

operations. Through its optimization framework, the tool improves system 

efficiency by strategically allocating available flexibility resources, leading to a more 

reliable, cost-effective, and future-ready distribution network. 

▪ Promoting Fairness, Transparency, and Equity in Flexibility Allocation: A key 

objective of the tool is to ensure fairness in how flexibility is allocated among 

network users. Flexibility is distributed in a non-discriminatory manner based on 

the actual needs and constraints of the grid, as well as the availability of resources 

from DERs and buildings. The tool supports transparent decision-making and 

equitable market participation by aligning flexibility procurement strategies with 

regulatory frameworks and stakeholder expectations, avoiding practices that could 

disadvantage specific users or locations. In practical terms, this can be ensured via 

a DSO that, in cooperation with the NRA, chooses the tariffs with respect to forward 

(e.g., day-ahead) predicted conditions [30]. 

3.2.2.2 Methodology 

The MvNM tool is designed to optimize the flexibility potential of DERs and 

buildings, enabling system operators to manage grid congestion and maintain 

system cost-efficiency (i.e., minimizing the overall system operational costs, such 

costs associated with DR activation and generation curtailment). The problem 

focuses on day-ahead optimization for a single day (i.e., the next day), which is a 

practical approach, reducing computational complexity while retaining the 

temporal granularity needed to analyze hourly variations.  

The problem represents a decision-making strategy of the DSO, focusing on 

applying appropriate cost penalties to maximize the operational efficiency of the 

network by minimizing costs for demand and generation curtailment that needs 

to be resorted for the security preservation of the network. The cost penalties 

(€/MWh) represent monetary compensation (in €/MWh) to incentivize participants 

to consume more or less energy. The distribution tariff structure transfers part of 

the network costs to the network users (consumers/prosumers), which may vary 



 

EVELIXIA – D4.3 EVELIXIA Autonomous District Digital Twins 68 

temporally and spatially. Although not directly dealing with the network tariff type, 

the cost penalties are designed similarly to volumetric tariffs (€/MWh). This 

variability is designed to signal prosumers about the cost of their energy usage or 

generation at specific times and locations, encouraging more efficient usage 

patterns and reducing strain on the grid. It also allows the DSO to account for local 

network constraints and operational costs.  

Upward flexibility refers to the ability to increase demand or energy consumption 

at a network node when requested by the DSO. This might be required to balance 

excess generation (e.g., from renewable sources like solar or wind) or stabilize the 

grid during low-demand hours. Downward flexibility refers to load reduction. The 

flexibility providers (via aggregators) react to these requests (DSO signals) by 

optimizing their demand response actions, i.e., adjusting the flexibility limits 

according to the maximum revenue. 

The optimization framework can accommodate variable cost penalties trends 

(from the system operator’s point of view) that reflect the network needs. For 

example, an upward flexibility increasing penalty trend indicates a time-dependent 

cost structure, where the cost of upward flexibility increases during certain hours, 

reflecting higher system demand or reduced availability of flexibility during those 

hours and market conditions where upward flexibility is more expensive due to 

limited resources or high opportunity costs. On the other hand, as regards 

downward flexibility decreasing penalty trend, the penalty values are highest 

during morning-mid-day hours and gradually decrease throughout evening-night 

and early morning, suggesting that it is more costly to reduce demand during peak 

hours and less costly during later hours (likely off-peak). The downward flexibility 

penalty is typically used as an economic disincentive for the DSO to prevent 

demand reduction when it is less efficient or not beneficial for the system. For 

instance, during peak solar generation hours, reducing demand may not be 

efficient because it could lead to excess energy curtailment. In addition, a variable 

RES curtailment penalty can be used based on the cost of lost energy and time-of-

day variations or market conditions. 

The tool optimization framework is depicted in Figure 28. 

The process begins by initializing parameters and constants, which include the 

hourly demand profiles of network users, renewable energy generation forecasts, 
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and grid capacity and congestion limits (for the EVELIXIA project, these inputs are 

derived for the iVN simulation engine, IS15). Additionally, the flexibility potential of 

DERs and buildings is incorporated, representing their upward and downward 

flexibility margins (for the EVELIXIA project, this input is derived from the Flex 

Forecasting tool, IS4). These parameters form the foundation for determining the 

flexibility activation strategies required for grid balancing. 

Following initialization, the optimization problem is structured for a 24-hour 

horizon, where flexibility penalties are assigned to upward and downward energy 

shifts. At this step, the parametric analysis setup is parametrized to account for 

varying flexibility margins across different nodes and penalty multipliers for upward 

flexibility, thus enabling the tool to evaluate multiple scenarios under different 

flexibility and pricing conditions, if needed. 

Before the optimization algorithm, the pre-optimization step is performed to 

compute excess renewable energy generation from distributed sources such as PV 

or wind. This step identifies the available upward flexibility margins for each 

network node and calculates the amount of excess energy that can either be 

utilized through demand response or curtailed when necessary. The input is the 

power flow analysis for the initial state of the network (baseline profiles, 

congestion), conducted by the simulation engine. 
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Figure 28. MvNM flowchart 
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The optimization problem is formulated as a cost minimization function that aims 

to minimize the operational costs associated with three key corrective actions: 

generation curtailment, upward flexibility activation, and downward flexibility 

activation, which can be defined as follows: 

𝑚𝑖𝑛𝐶𝑜𝑝 = ∑ (𝑎1𝑃𝑐𝑢𝑟𝑡,ℎ + 𝑎2𝑃𝑓𝑙𝑒𝑥−𝑢𝑝,ℎ + 𝑎3𝑃𝑓𝑙𝑒𝑥−𝑑𝑜𝑤𝑛,ℎ)
𝐻
ℎ=1                                        Eq. 3.2.2.1 

where Cop represents the total operational cost, Pcurt,h is the curtailed power at hour 

h, Pflex-up,h is the power shifted upward, and Pflex-down,h is the power shifted downward. 

The parameters a1, a2, a3 are weight factors reflecting the cost priorities for 

curtailment, upward flexibility, and downward flexibility, respectively, which are 

designed by the DSO. 

The MvNM tool's optimization process is formulated as a linear programming 

problem, enabling efficient flexibility allocation, ensuring cost-effective grid 

balancing while respecting operational constraints such as energy neutrality, 

congestion limits, and demand flexibility bounds. 

The optimization problem considers multiple constraints to ensure feasibility and 

reliability in the power network. Energy neutrality is enforced by ensuring that the 

total upward and downward flexibility adjustments balance out over the defined 

time horizon (energy shifts maintain a net-zero impact over the 24-hour period), as 

follows: 

∑ (𝑃𝑓𝑙𝑒𝑥−𝑢𝑝,ℎℎ∈𝐻 ) = ∑ (𝑃𝑓𝑙𝑒𝑥−𝑑𝑜𝑤𝑛,ℎℎ∈𝐻 )                                                                           Eq. 3.2.2.2 

Flexibility bounds are imposed to limit the activation of demand response 

resources within predefined margins. The upward and downward shifts are 

restricted by the maximum available flexibility at each node, ensuring that network 

constraints are not violated: 

0 ≤ 𝑃𝑓𝑙𝑒𝑥−𝑢𝑝,ℎ ≤ 𝑃𝑚𝑎𝑥−𝑢𝑝,ℎ , 0 ≤ 𝑃𝑓𝑙𝑒𝑥−𝑑𝑜𝑤𝑛,ℎ ≤ 𝑃𝑚𝑎𝑥−𝑑𝑜𝑤𝑛,ℎ                                    Eq. 3.2.2.3 

where Pmax-up,h and Pmax-down,h are the maximum available flexibility to increase above 

and reduce below baseline consumption at each node, respectively. 

Additionally, curtailment limits are established to prevent excess renewable 

generation from being curtailed beyond the available capacity: 

0 ≤ 𝑃𝑐𝑢𝑟𝑡,ℎ ≤ 𝑃𝑟𝑒𝑠−𝑔𝑒𝑛,ℎ                                                                                                     Eq. 3.2.2.4 
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where Pres-gen,h is the renewable energy generation available at hour h. 

The optimization framework also accounts for network constraints, ensuring that 

power balance is maintained across the grid. Time-specific flexibility allocation is 

introduced to allocate downward flexibility during predefined compensation 

periods, ensuring that flexibility adjustments are scheduled efficiently over the daily 

horizon (e.g., Pflex-down,h during compensated hours equals Pflex-up,h

 during upward shift hours). 

To manage congestion, the optimization ensures that power flows do not exceed 

the network's thermal and voltage constraints, imposing the following condition: 

0 ≤ 𝑃𝑔𝑟𝑖𝑑,ℎ ≤ 𝑃𝑔𝑟𝑖𝑑−𝑚𝑎𝑥,ℎ                                                                                                  Eq. 3.2.2.5 

where Pgrid-max,h represents the maximum permissible grid capacity. 

Finally, the cost penalty structure prioritizes flexibility activation over curtailment 

by enforcing: 

𝑎1 ≫ 𝑎2, 𝑎3                                                                                                                           Eq. 3.2.2.6 

which ensures that the system always seeks to utilize available flexibility before 

resorting to renewable energy curtailment (based on Eq. 3.2.2.1). 

Once the optimization problem is solved, a post-optimization step updates the 

demand profiles to reflect the optimized flexibility allocation. The results, including 

the final flexibility shifts, curtailment levels, and operational costs, are assessed, and 

power flow analysis is conducted to validate the network's post-optimization state. 

The tool then performs a comparative analysis across different predefined 

configurations, evaluating the impact of varying flexibility margins and penalties. 

These outputs can serve as input in the Aggregated Demand Portfolio Manager 

tool (IS13), which is described in Section 3.2.3.  

The final outputs include the optimized flexibility allocation, curtailment results, 

updated load profiles, and key operational metrics such as the total cost of 

acquiring flexibility for the DSO, validation of energy neutrality, and congestion 

levels. 
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3.2.2.3 Evaluation & Results  

Case study network set-up 

For the evaluation of the MvNM tool functionality, a case study has been set up and 

tested, regarding grid flexibility and congestion management from the DSO side. 

The network under study has been built in MATLBA/Simulink environment, to 

represent a medium-voltage (MV) distribution grid where different types of loads 

and DERs interact under the coordination of a high-voltage/medium-voltage 

(HV/MV) substation. The purpose of this setup is to assess how the developed tool 

can optimize flexibility provision, minimize RES curtailment, and support 

congestion management through demand-side response. 

The simplified network is based on the Greek pilot site of the project (derived from 

EVELIXIA Deliverable D1.3: Pilot Site Surveys results, Use Cases definition and 

market needs analysis), as it is described in Section 2.2.1.3.  Given that at the time 

that IS12 was tested the grid modelling in iVN was under development, so, for IS12 

validation purposes, the network was built in MATLAB/Simulink R2024a (using the 

same static data and only including electricity grid modelling). The test-network 

includes four nodes; at the center of the system is Node 1, the HV/MV substation, 

which acts as the main interface between the high-voltage (HV) transmission grid 

and the MV distribution network. This node is responsible for monitoring the overall 

load, detecting congestion, and managing flexibility bids (by the DSO) across the 

connected nodes. It plays a key role in balancing supply and demand, ensuring that 

available flexibility is used efficiently before resorting to more expensive or 

disruptive measures such as curtailment or external reserves. 

Two major loads are connected to the MV network; Node 2, representing a research 

institute (namely CERTH/CPERI Building), is characterized by its potential to 

provide upward and downward flexibility, meaning that it can shift its electricity 

consumption in response to system needs. This node actively reports its load 

patterns and any available flexibility resources, such as on-site battery storage or 

controllable demand. In contrast, Node 3, which represents a hospital (namely 

Mpodosakeio Hospital), is categorized as a critical load. Due to its essential nature, 

its ability to reduce consumption is limited, but it may still offer some flexibility 

through backup generation or storage assets. The priority for this node is to ensure 
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a reliable and uninterrupted power supply, while still participating in grid-

balancing mechanisms when possible. 

Node 4 represents the aggregated PV plants’ production connected to the MV 

network, offering power generation data and potential flexibility through 

curtailment services. Under normal conditions, the PV plants operate at maximum 

production with minimal restrictions. However, during congestion or imbalances, 

the output can be curtailed to maintain system stability. Ideally, instead of 

curtailment, the tool aims to redistribute excess PV generation by utilizing available 

flexibility from Nodes 2 and 3, ensuring a more efficient use of renewable energy. 

The developed tool integrates this grid setup into its optimization framework, 

allowing the DSO to evaluate different flexibility procurement strategies (i.e., design 

appropriate electricity tariffs and incentive-based mechanisms). By leveraging the 

load-shifting capabilities of Nodes 2 and 3, the tool determines the optimal 

allocation of flexibility, prioritizing cost-efficient solutions that minimize 

unnecessary PV curtailment. The optimization also considers economic factors, 

assigning flexibility provision based on the cost-effectiveness of different nodes. 

Case study implementation 

At the first step of the tool’s implementation, the input data from the simulation 

environment (which in this case is MATLAB/Simulink, performing the power flow 

analysis of the network under study) is loaded to define the conditions of the 

selected grid operation scenario. The primary inputs include the hourly electricity 

demand for Node 2 (representing a research institute) and Node 3 (representing a 

hospital), as well as the PV generation at Node 4. The demand values provide the 

baseline energy consumption of the research institute and the hospital, while the 

PV generation data indicates the available renewable energy supply that could 

potentially be curtailed or redistributed depending on grid conditions. Beyond 

demand and generation data, the tool also incorporates predefined flexibility 

margins for Nodes 2 and 3. These margins define the extent to which each node 

can adjust its electricity consumption in response to system requirements. By 

applying these margins, the tool calculates the upper and lower bounds for 

potential shifts in demand. The upper bound represents the maximum additional 

consumption that can be accommodated, while the lower bound determines the 

minimum consumption level that can be maintained while still providing 
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downward flexibility. By varying these margins, the tool can explore how flexibility 

availability impacts grid operations.  

For the Greek network case study, the penalties applied in the optimization process 

were designed to balance flexibility activation costs and minimize renewable 

energy curtailment. The penalty values used are i) the Upward Flexibility Penalties, 

applied to the cost of increasing demand at specific network nodes when required 

by the Greek DSO; the values were dynamically adjusted using a penalty multiplier, 

which scaled the base penalty values for upward flexibility at each node, ii) the 

Downward Flexibility Penalties, used to discourage excessive load reduction when 

it was not beneficial for the system; the penalty values followed a decreasing trend, 

where they were highest during peak hours (morning and mid-day) and gradually 

reduced during off-peak periods (evening and night) and iii) the Renewable Energy 

Curtailment Penalty – a fixed penalty of 115 €/MWh was applied [30], to minimize 

curtailment of RES; this penalty discouraged the tool from resorting to curtailment 

unless flexibility resources were insufficient to absorb the excess generation. The 

integration of these penalties into the cost function of the optimization model, 

allows the tool to test scenarios where increasing consumption is either cheap or 

expensive, influencing the optimization process. As results, the practical value of 

these cost penalties for the Greek DSO (HEDNO) lies in the following aspect: a) 

Testing Grid Behavior Under Different Scenarios: By varying the flexibility margins 

and penalties, the tool can simulate how Nodes 2 and 3 respond to different levels 

of flexibility availability and cost. HEDNO can use these insights to design optimal 

flexibility strategies, such as encouraging flexibility participation from nodes with 

lower penalties and identifying the impact of tighter flexibility margins on grid 

stability, b) Policy and Tariff Design: The penalty multipliers can help HEDNO 

evaluate the financial implications of different pricing strategies for flexibility 

services. 

Another key aspect of the input processing is the estimation of excess PV 

generation. The tool calculates the difference between the PV output at Node 4 

and the combined demand at Nodes 2 and 3. If PV generation exceeds local 

consumption, the tool identifies this surplus as potential excess energy that could 

be curtailed if no flexibility is available to absorb it. To avoid unnecessary 

curtailment, the tool simultaneously evaluates the total available flexibility from the 
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research institute and the hospital, determining how much of the excess energy 

can be reallocated rather than curtailed. It is noted that the input data regards 

several different days responding to multiple conditions of the network under 

study. Figure 29 illustrates the input data for one indicative day, in which the PV 

generation excess demand for certain hours within a day.  

 

Figure 29. Hourly Demand (Nodes 2 and 3) and PV Generation (Node 4) for the 
network under study, for a selected day 

Figure 30 depicts the flexibility margins considered in this case study for Nodes 2 

and 3, equally set to 15% around the baseline consumption of the nodes. 
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Figure 30. Comparison of the baseline demand (Nodes 2 and 3) and shift upward and 
downward bounds for the network under study, for a selected day 

Finally, Figure 31 presents the potential utilization of the excess PV energy if 

maximum upward flexibility from Nodes 2 and 3 is activated at the specific over-

production timeframes. 

 

Figure 31. Potential utilization of the excess PV energy if maximum upward flexibility 
from Nodes 2 and 3 is activated (based on Figure 29 and Figure 30) 
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These outputs are the necessary input for the next stage of the tool, where the 

optimization process will determine the most efficient way to allocate flexibility 

resources and minimize curtailment, while ensuring grid economic viability from 

the DSO perspective. 

Moreover, at this step, the tool processes the pre-optimization power flow results 

to assess the baseline power flow conditions before any flexibility allocation or 

optimization adjustments are applied. This serves as a reference point for 

comparison with the post-optimization power flow, helping to evaluate the impact 

of flexibility on grid operation. The tool establishes key system constraints related 

to voltage and power flow limits. The upper and lower voltage bounds for this case 

study are set at 1.05 pu and 0.95 pu (common standards, valid for the Greek 

network), respectively, ensuring that voltage levels remain within acceptable 

operational limits. Additionally, power flow constraints are imposed, restricting 

active power transfer at higher levels than the line capacity (set to 500 kW for the 

case study), representing the allowable range for the transmission line capacity for 

the case study. 

Next, the optimization step in the Greek case study for the MvNM tool is 

implemented to manage flexibility allocation and PV curtailment while minimizing 

operational costs for the system, managed by the DSO. The goal is to maximize the 

use of available flexibility at the two nodes of the network, activating their flexibility 

capabilities to absorb excess PV generation and maintain the balance of the grid in 

the most cost-efficient way. 

In this case, the decision variables of the optimization problem (formulated as a 

linear problem in Eq. 3.2.2.1) include the upward and downward shifts in demand at 

the two nodes, as well as PV curtailment. Upward shifts represent an increase in 

demand at a given hour, allowing the system to absorb excess PV generation, 

whereas downward shifts compensate for these adjustments at different times to 

maintain energy neutrality within the daily horizon. PV curtailment is only 

introduced when flexibility is insufficient to fully accommodate the excess PV 

generation. 

The optimization process is subject to several constraints. A power balance 

constraint ensures that at each hour, the sum of flexibility adjustments and PV 

curtailment matches the available excess PV generation. In cases where flexibility 
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alone is insufficient, PV curtailment is activated. The problem formulation also 

includes energy neutrality constraints, requiring that any upward shift in demand 

at a node is later compensated by a downward shift over the optimization period. 

This ensures that no net energy imbalance occurs at the end of the day. This allows 

the system operators to manage effectively not only PV curtailment, but also load 

congestion that usually occurs during late evening timeslots. Thermal constraints 

are also incorporated into the problem, ensuring that power flows performed in the 

simulation environment remain within the maximum allowable line capacity. The 

flexibility at each node is further constrained by the predefined margins (in this 

case 15% for both upward and downward flexibility for both nodes under study), 

which limit the extent to which demand can be shifted up or down.  

The cost function in this optimization is formulated to minimize the total cost of 

utilizing flexibility and PV curtailment. The penalties for activating flexibility are 

applied dynamically, with economic allocation ensuring that the node with the 

lower penalty is allocated more power. This economic prioritization follows an 

inverse relationship between penalty values and flexibility allocation, ensuring cost 

efficiency in the optimization process. Additionally, PV curtailment carries a fixed 

high penalty cost, encouraging the system to utilize flexibility as much as possible 

before resorting to curtailment. 

The problem for the present tool implementation is solved using a linear 

programming approach, where the objective function is minimized while satisfying 

all equality and inequality constraints. The MATLAB linprog solver is used to 

compute the optimal values for flexibility activation and PV curtailment. The 

solution provides the optimal flexibility schedule for both nodes, the total flexibility 

cost, and the amount of PV curtailment required. If the solver successfully 

converges, the results are post-processed to validate energy neutrality, ensuring 

that upward and downward flexibility adjustments balance over the day. The 

optimized flexibility and curtailment results for this case are visualized Figure 32. 
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Figure 32. Optimized flexibility and curtailment results (Nodes 2 and 3) for the 
network under study 

The results presented in Figure 32 are send to the simulation environment, to 

perform again the power flow analysis, using the optimized consumption curve for 

the load nodes (Nodes 2 and 3) and the optimized PV production curve (Node 4). 

The power flow results with the updated set-points are sent back to the MvNM tool, 

for the post-optimization power flow evaluation. These results are presented in 

Figure 33, Figure 34 and Figure 35. 
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Figure 33. Post-Optimization power flow results for the network under study: Active 
power flow for Nodes 2, 3, and 4 

 

Figure 34. Post-Optimization power flow results for the network under study: 
Reactive power flow at Nodes 2, 3, and 4 
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Figure 35. Post-Optimization power flow results for the network under study: Voltage 
magnitude – in per unit (pu) – at Nodes 2, 3, and 4 

The variation of the power consumption for both flexible nodes after the optimized 

set-points compared to their baseline consumption, as well as the curtailed PV 

generation set points are depicted in Figure 36, Figure 37 and Figure 38, via a 

comparison between the pre-optimization power flow simulation results and the 

post-optimization power flow simulation results. 
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Figure 36. Pre and Post-Optimization power flow results for the network under study: 
Active power flow for Nodes 2, 3, and 4 

 

Figure 37. Pre and Post-Optimization power flow results for the network under study: 
Reactive power flow for Nodes 2, 3, and 4 
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Figure 38. Pre and Post-Optimization power flow results for the network under study: 
Voltage magnitude – in per unit (pu) – at Nodes 2, 3, and 4 

As Figure 36 and Figure 37 show, the optimized active and reactive power flows at 

node ensure energy balance in the network under study, exploiting the maximum 

available flexibility of the loads to absorb the PV generated energy during high 

production hours. As a result, the voltage profile after the optimization at every 

node is improved (i.e., reduced overvoltage). 

Overall, the presented case study verifies the MvNM optimization framework can 

effectively integrate demand flexibility to manage excess RES generation, ensuring 

cost-efficient grid operation while maintaining system constraints and minimizing 

unnecessary curtailment. Although simplified, the case under study proves the 

validity of the optimization process of the tool. 

3.2.2.4 Next Steps  

The next steps should focus on implementation, validation, and integration of 

MvNM within the project’s associated services and relevant pilot sites. The goal is to 

ensure that the tool optimally allocates flexibility, supports congestion 

management, and reduces grid operational costs while complying with existing 

market and regulatory frameworks. The proposed action plan by the end of the task 

(i.e., M33) is the following: 
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▪ Streamline a structured data exchange via the EVELIXIA Services Broker that 

enables seamless data extraction from IS15-iVN, in parallel with the grid modelling 

progress and power flow simulations. 

▪ A structured data exchange will enable seamless data transactions between the 

MvNM and other ISs (IS4, IS13 and possibly other), as described in the methodology. 

▪ Iterative engagement with grid-level actors, including system operators and 

aggregators, to co-define scenario development and parameter definition. For 

practical validation, the tool must be integrated into an operational DSO network 

or microgrid where real-time grid data is continuously fed into the system (this 

should be done via the district digital twin of the project). The system operators for 

the pilot sites should provide feedback on the tool’s usability and effectiveness, 

enabling refinements based on real-world operational insights. Since the tool 

integrates cost penalties and flexibility bids, it is crucial to assess its response to 

variations in electricity prices from market platforms such as EPEX Spot and Nord 

Pool. Different day-ahead and intra-day electricity price signals should be 

introduced where relevant to evaluate whether the tool can optimize demand-side 

participation. 

3.2.3 Aggregated Demand Portfolio Manager (IS13) 

Modern energy grids are increasingly challenged by the need to balance supply 

and demand while integrating renewable sources and ensuring operational 

efficiency. Variations between the predicted and actual energy consumption at the 

building level can lead to grid instability, increased operational costs, and 

underutilization of available distributed energy resources. At the same time the 

consumption profiles of buildings can be deviated at some extend, still sustaining 

the thermal comfort behaviour of occupants. This way there are needs to be fulfilled 

from the building’s side and requests that would alleviate the efforts to be 

performed from the DSO side avoiding stress and congestion in the grid. The 

Aggregated Demand Portfolio Manager (ADPM) serves as an intermediate stage 

between the two aforementioned sides aiming to enable day-ahead modifications 

on the consumption profile schedule, i.e., re-dispatch operation. By leveraging 

aggregated building data and integrating dynamic demand response signals from 
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Distribution System Operators (DSOs), ADPM plays a critical role in supporting grid 

balancing at the district scale. 

 

Therefore, the ADPM service builds upon the growing body of research that 

emphasizes the importance of flexible demand-side management to enhance grid 

resilience. Traditional optimization methods, such as mixed-integer programming, 

often rely on deterministic assumptions that can lead to suboptimal outcomes in a 

dynamic operational environment. In contrast, ADPM employs advanced episodic 

reinforcement learning and continuous policy-search techniques. This enables it to 

actively trade available supply and demand packages, plan resources more 

effectively, and minimize both economic and technical risks associated with grid 

operations. The successful integration of these methodologies is expected to 

enhance operational efficiency, reduce the reliance on expensive grid 

reinforcement, and support the broader transition towards sustainable energy 

systems. 

 

Figure 39 illustrates the general workflow of this service. More specifically, 

Aggregated Demand Portfolio Manager is designed to aggregate baseline energy 

consumption predictions and building-specific flexibility bounds—ensuring that 

adjustments to energy consumption do not compromise thermal comfort. The tool 

receives inputs from individual building systems regarding their consumption 

behaviors and flexibility limits, as well as district-level DSO requests that specify 

desired adjustments along with associated incentives. Using these inputs, ADPM 

forms aggregated flexibility pools that allow energy aggregators and retailers to re-

plan and re-schedule demand on a daily basis though recommendations. 

 

The core of ADPM’s functionality is its optimization framework, which is 

underpinned by a reinforcement learning approach. This framework continuously 

searches for and updates optimal energy trading policies in a day-ahead manner, 

actively fulfilling thermal comfort needs and reducing electricity bills from the 

users’ side, while also mitigating risks and alleviating DSO’s effort in congestion 

management. By aligning building-level flexibility with the operational constraints 

of the grid, ADPM ensures that the aggregated demand portfolio not only meets 
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the grid’s balancing requirements but does so in a cost-efficient and economically 

beneficial manner for different involved stakeholders. 

 

Figure 39. General scheme of Aggregated Demand Portfolio Manager 

3.2.3.1 Objectives  

IS13 - Technical Objective "TRL5 to TRL7": The primary technical objective of IS13 

is to advance the Aggregated Demand Portfolio Manager from TRL5 to TRL7. At 

TRL5, the tool has been validated in controlled, simulated environments and has 

demonstrated its capability to process building-level energy data and integrate 

district-level DSO signals. The next phase focuses on robust system integration, 

responsiveness, and validation in real emulated grid scenarios. Key technical 

enhancements include: a) Integration and Interoperability; b) Robustness, and; c) 

Scalability and Resilience; Regarding the first point seamless interfacing with other 

EVELIXIA modules (e.g., day-ahead flexibility forecasting and DR response systems) 

is expected following NGSI-LD standards. The second point aims at enhancing the 

tool’s computational efficiency and robustness to support energy re-schedule 

through recommendations, i.e., re-dispatch in dynamic grid conditions. The last 

part aims to demonstrate consistent performance under varying operational loads 

and diverse grid scenarios through pilot diverse cases. These improvements will not 
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only enhance the tool’s operational reliability but also ensure its practical 

applicability, paving the way toward TRL 7. 

IS13 - Scientific Objective: The scientific objective of IS13 is to develop and validate 

an advanced decision-making framework for aggregated demand management 

that leverages episodic reinforcement learning. This approach aims to provide an 

enhanced performance compared to traditional deterministic optimization 

techniques by actively adapting to the dynamic and uncertain nature of energy 

consumption and grid conditions.  One of the primary scientific pursuits is the 

development of advanced optimization techniques that employ continuous policy-

search mechanisms. This enables active trading of flexible energy supply and 

demand packages in a day ahead manner. Also, this approach integrates multiple 

data streams—including baseline consumption predictions, building flexibility 

bounds, and DSO incentives—to establish an adaptive, data-driven resource 

planning strategy that minimizes both economic and technical risks, sustaining 

thermal comfort and maximizing self-consumption in cases where PV systems are 

included. Additionally, the reinforcement learning framework is rigorously 

validated in dynamic environments, effectively managing and optimizing 

aggregated energy portfolios under diverse operational conditions. This holistic 

strategy not only improves grid stability but also maximizes revenue opportunities 

for energy aggregators. Through this innovative approach, IS13 seeks to provide a 

scientifically rigorous foundation for autonomous energy management that aligns 

with the evolving needs of modern grid systems. 

3.2.3.2 Methodology 

In our approach, we adopt an episodic reinforcement learning framework to 

optimize the aggregated demand portfolio. In this formulation, each episode 

corresponds to a full day segmented into hourly intervals. At each time step 𝑡, the 

RL agent observes the current state—including baseline consumption, residual 

demand, flexibility bounds, DSO requests and incentives for fulfilling those requests 

and retail price tariffs—and then selects an action 𝑎𝑡  to adjust the consumption 

profile. The agent’s objective is to learn an optimal policy that minimizes the 

monetary cost while satisfying grid constraints and preserving thermal comfort.  
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The overall cost—and hence the reward—is designed to reflect several critical 

aspects of the problem: 

• Residual Demand Management: Ensuring that the adjusted consumption 

aligns with the baseline so that the net energy balance is close to zero (before 

and after load scheduling). 

• Price Awareness: Encouraging the agent to adhere to DSO signals when 

available and to extrapolate price tariffs in their absence, thereby reducing 

monetary costs. 

• Flexibility Constraint Compliance: Penalizing deviations that would violate 

the flexibility bounds of individual buildings, thus maintaining thermal 

comfort. 

Formally, the residual demand is updated as: 
𝑑𝑡+1 = 𝑑𝑡 + 𝑏𝑡 − 𝑎𝑡                                                    Eq. 3.2.3.1 

where 𝑏𝑡 represents the baseline consumption. The reward at time t is then defined 

as: 

𝑅𝑡 = −∑ 𝐶𝑖
4
𝑖=1                                                                                                                       Eq. 3.2.3.2 

where 𝐶1 is the residual demand cost being aimed to produce consumption profile 

with close to zero energy balance before and after scheduling, 𝐶2 serves for price 

awareness cost term prompting the agent to follow requests provided by the DSO 

if exist, and extrapolate price tariffs while there are no DSO requests, thus aiming 

at monetary cost reduction in both cases. Finally, 𝐶3 and 𝐶4 stand for the flexibility 

violation factors inducing penalization in cases where the reinforcement learning 

agent outcomes energy consumption decisions that violate thermal comfort by 

deviation out of the flexibility bounds. 

More specifically, regarding residual demand cost, for t=23 (end of the day on an 

hourly basis): 

𝐶1 =

{
 
 

 
 𝑐𝑜𝑒𝑓1 ∙

|𝑑𝑡|

∑ 𝑏𝑘
23
𝑘=0

, 𝑑𝑡 > 0

𝑐𝑜𝑒𝑓2 ∙
|𝑑𝑡|

∑ 𝑏𝑘
23
𝑘=0

, 𝑑𝑡 < 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                 Eq. 3.2.3.3 

While for cases where t<23: 

𝐶1 = {
𝑐𝑜𝑒𝑓3 ∙

|𝑎𝑡−𝑓𝑡
𝑑𝑜𝑤𝑛|

∑ 𝑏𝑘
23
𝑘=0

, 𝑝𝑡 >
1

6
∑ 𝑝𝑘
𝑡+6
𝑘=𝑡 ,

𝑐𝑜𝑒𝑓3 ∙
|𝑎𝑡−𝑓𝑡

𝑢𝑝
|

∑ 𝑏𝑘
23
𝑘=0

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                            Eq. 3.2.3.4 
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If a distribution system operator signal is active (𝐷𝑆𝑂_𝐷𝑅𝑡 ≠ 0), 𝐶1  is modified as 

follows: 

𝐶1 = 𝑐𝑜𝑒𝑓3 ∙
|𝑎𝑡−(𝑏𝑡+𝐷𝑆𝑂_𝐷𝑅𝑡)|

∑ 𝑏𝑘
23
𝑘=0

                                                                                                 Eq. 3.2.3.5 

For the price awareness cost 𝐶2, if 𝐷𝑆𝑂_𝐷𝑅𝑡 > 0: 

𝐶2 = {

−𝑐𝑜𝑒𝑓3 ∙ 𝑎𝑡 ∙ 𝑝𝑡 (1 −
𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑡

1+|𝑏𝑡+𝐷𝑆𝑂_𝐷𝑅𝑡−𝑎𝑡|
) , 𝑖𝑓 𝑟𝑎𝑡𝑖𝑜𝑡 > 1,

−𝑐𝑜𝑒𝑓3 ∙ 𝑎𝑡 ∙ 𝑝𝑡 (1 −
𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑡

1+|𝑓𝑡
𝑢𝑝
−𝑎𝑡|

) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                            Eq. 3.2.3.6 

While in the case where 𝐷𝑆𝑂_𝐷𝑅𝑡 < 0, the variable 𝑓𝑡
𝑢𝑝 is replaced by 𝑓𝑡𝑑𝑜𝑤𝑛  in the 

corresponding parts of the previous equation. Also, 𝑟𝑎𝑡𝑖𝑜𝑡 = (𝑓𝑡
𝑢𝑝
− 𝑏𝑡)/𝐷𝑆𝑂_𝐷𝑅𝑡  or 

𝑟𝑎𝑡𝑖𝑜𝑡 = (𝑓𝑡
𝑑𝑜𝑤𝑛 − 𝑏𝑡)/𝐷𝑆𝑂_𝐷𝑅𝑡 . For the case where 𝐷𝑆𝑂_𝐷𝑅𝑡 = 0  then the cost 

parameter becomes: 𝐶2 = −𝑐𝑜𝑒𝑓3 ∙ 𝑎𝑡 ∙ 𝑝𝑡. 

The reward terms for penalizing the upper and lower flexibility violation are given 

by: 

𝐶3 = {
𝑐𝑜𝑒𝑓4 ∙

|𝑎𝑡−𝑓𝑡
𝑢𝑝
|

∑ 𝑏𝑘
23
𝑘=0

, 𝑖𝑓 𝑎𝑡 > 𝑓𝑡
𝑢𝑝
,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                      Eq. 3.2.3.7 

𝐶4 = {
𝑐𝑜𝑒𝑓3 ∙

|𝑎𝑡−𝑓𝑡
𝑑𝑜𝑤𝑛|

∑ 𝑏𝑘
23
𝑘=0

, 𝑖𝑓 𝑎𝑡 < 𝑓𝑡
𝑑𝑜𝑤𝑛,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                            Eq. 3.2.3.8 

Note that 𝑐𝑜𝑒𝑓1⋯4  are weighting parameters, while also ∑ 𝑏𝑘
23
𝑘=0  serves as a 

normalization factor using the total baseline energy in order to ensure consistent 

scaling. Specifically, this factor enhances stability during training, ensures 

proportional penalties across scenarios, and aligns the reward with real-world 

performance metrics. 

3.2.3.3 Evaluation & Results 

To evaluate the performance of the Aggregated Demand Portfolio Manager, data 

from the Greek pilot site were utilized. The conducted experiments were derived 

using the Proximal Policy Optimization (PPO) reinforcement learning algorithm. In 

this pilot, each node corresponds to a single building. The reinforcement learning 

agent was trained on five days of data and subsequently tested on three additional 

days. During both training and testing, the agent’s objective was to produce an 

optimal consumption profile—referred to as the Aggregated decision—that aligns 
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with the DSO request where applicable, respects flexibility bounds, and responds 

to incentive signals in the form of discounted prices. 

Figure 40 and Figure 41 illustrate the behavior of the RL agent for Node 2 (CERTH) 

and Node 3 (Hospital), respectively, on a representative test day. Each chart plots 

multiple time-series: 

• Down Flex Bound (blue line) and Up Flex Bound (red line): Define the 

allowable range of consumption that maintains thermal comfort. 

• Baseline (green line): The predicted (or originally planned) consumption for 

each building. 

• Aggregated Decision (black dashed line): The RL agent’s optimized 

consumption profile. 

• DSO Request (purple line): The desired consumption adjustment signaled by 

the DSO. Note that this is directly the desired trajectory to be followed by the 

DSO rather than the difference from the baseline. 

• Price (orange dashed line): The standard retail price signal. The algorithm 

takes into account this price profile for those hours of the day that DSO does 

not produces a request. Future realizations will evaluate cases where this 

profile is excluded meaning that the DSO does not allow deviations even if 

𝐷𝑆𝑂_𝐷𝑅𝑡 = 0. 

• DSO Discounted Price (orange dotted line): The price signal with a discount 

applied as an incentive for following DSO requests. Notably, the DSO 

Discounted Price applies the full discount only when the building or 

aggregator fully meets the requested consumption adjustment. If the 

request is only partially fulfilled, a proportionally reduced discount is applied 

(e.g., via linear interpolation). This design encourages complete compliance 

with the DSO request to maximize financial benefits. 
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Figure 40. Consumption and pricing signals for Node 2 (CERTH) on Day 1. Down flex 
bound (blue line); Up flex bound (red line); Baseline (green line); Aggregated decision 

(dashed black line); DSO desired trajectory (purple line); Retail price tariff (dashed 
orange line); DSO discounted price (dotted orange line) 

When the DSO requests a deviation from the baseline consumption profile 

(indicated by the purple line), the agent adjusts its aggregated decision 

(represented by the black dashed line) to meet the grid’s requirements, ensuring 

that the resulting profile remains within the prescribed flexibility bounds (the blue 

and red lines). In periods without a specific DSO request, the agent is free to 

optimize energy consumption based on pricing signals, where the standard retail 

price (dashed orange line) aligns with the discounted price (dotted orange line). 
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Figure 41. Consumption and pricing signals for Node 3 (Hospital) on Day 1. Down flex 
bound (blue line); Up flex bound (red line); Baseline (green line); Aggregated decision 

(dashed black line); DSO desired trajectory (purple line); Retail price tariff (dashed 
orange line); DSO discounted price (dotted orange line) 

Notably, the discounted price applies the full discount only when the entire DSO 

request is fulfilled; if the request is only partially met, a proportionally reduced 

discount is provided through linear interpolation to encourage complete 

compliance. Overall, the agent’s aggregated decision consistently remains within 

the flexibility bounds, confirming that thermal comfort constraints are maintained 

despite dynamic adjustments in consumption. 

Table 2 summarizes the percentage cost differences and percentage residual 

demand differences for each node on three test days, compared to the baseline 

scenario. 
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Table 2. Comparison of percentage cost and residual demand differences relative to 
the baseline for Node 2 and Node 3. 

Node Day 
Percentage 

Difference Cost 
(%) 

Percentage 
Difference 

Residual (%) 

Node 2 - 
Certh 

Day 1 9.8 -4.1 
Day 2 8.6 -5.3 
Day 3 12.8 -7.6 

Node 3 - 
Hospital 

Day 1 4.9 -3.1 
Day 2 2.1 -3.1 
Day 3 5.6 -5.8 

 

The analysis reveals several key insights regarding the performance of the RL agent. 

First, the positive percentage values in the “Percentage Difference Cost” column 

clearly indicate a monetary cost reduction relative to the baseline. Specifically, 

Node 2 exhibits cost savings ranging from 8.6% to 12.8%, while Node 3 achieves 

more modest yet still notable savings between 2.1% and 5.6%. In contrast, the 

“Percentage Difference Residual” values are negative across all test days, implying 

that the agent’s decisions resulted in a slightly higher total energy consumption 

compared to the baseline. This increase in consumption is not necessarily a 

negative outcome; rather, it reflects a strategic shift where energy is consumed 

during cheaper periods or adjusted to meet DSO requests, rather than an overall 

inefficiency in energy use. However, in future realizations the agent will be 

prompted to reduce this percentage gap which may increase more the energy 

savings and the monetary cost. 

 

Furthermore, the degree of cost savings is closely tied to the incentive policies and 

the available flexibility of each building. Higher discounts and greater flexibility 

allow the RL agent to shift demand more aggressively, leading to larger cost 

reductions. Looking ahead, future project stages will explore different incentive 

policies, and the agent may be further constrained to maintain the same total daily 

energy consumption as the baseline. This will provide additional insights into how 

incentive design interacts with flexibility to shape both cost and consumption 

outcomes. 
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In summary, the results underscore several key takeaways. The RL agent 

demonstrates effective coordination with DSO requests by adjusting consumption 

profiles in a manner that aligns with grid needs. Even in scenarios where overall 

consumption increases, the strategic load shifting achieved by the agent results in 

significant cost reductions, highlighting the economic benefits of an incentive-

driven demand response approach. Moreover, the methodology is scalable and 

holds promise for extension to additional nodes and more complex energy systems, 

where multiple energy vectors—such as heating, cooling, and electricity—are 

managed concurrently. 

 

It is important to note that while the pilot results were obtained with each node 

representing a single building, we also used simulated data to illustrate the 

functionality of the system at a district level. In the simulated scenario, a district is 

constituted by three buildings, and the DSO requests are provided at the district 

level. The agent then produces decisions for each building accordingly, ensuring 

that the aggregated consumption profile meets the DSO’s requirements while still 

respecting the individual flexibility and thermal comfort constraints of each 

building. This approach demonstrates the scalability of our solution and its 

potential applicability in more complex, multi-building district scenarios.  

 

In this scenario, the IS13 tool is tested on a node composed of three distinct 

buildings, each with its own baseline consumption profile and flexibility bounds. 

The overall objective remains the same: to sustain thermal comfort within each 

building while complying with any DSO requests at the district level. Figure 42 

depicts the consumption profiles and pricing signals for each individual building, 

while also the aggregated profile of the total consumption at the node/district level. 

In each plot, the black dashed line represents the agent’s recommended 

consumption, which seeks to follow the DSO request (purple line) whenever 

possible and otherwise exploit lower price tariffs (orange dashed and dotted lines). 

A key observation is that, during the evening hours (approximately 18:00 to 

midnight), the agent’s recommended profile diverges significantly from the purple 

line. This deviation occurs because, in that time frame, the DSO request effectively 

aligns with the baseline consumption (indicating no additional requirement for 

demand shifting). Consequently, the agent is “free” to respond purely to price 
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incentives—shifting consumption to less expensive periods while staying within 

each building’s flexibility bounds. 

 

Figure 42. Combined visualization of the three-building node at both the individual-
building and aggregated district levels. The left subfigures show each building’s 

baseline (green), flexibility bounds (blue and red), and the RL agent’s recommended 
consumption (black dashed), while the right panel aggregates these profiles to the 
district level. The purple line indicates the DSO’s requested consumption, and the 
orange lines reflect price signals (with a dotted line representing the discounted 

price). The circled areas highlight periods with no active DSO request, during which 
the agent shifts consumption based primarily on price tariffs. 

Table 3 provides the percentage difference in cost and residual consumption for 

each building, while Table 4 summarizes the same metrics at the aggregated 

district level. The results confirm that the agent’s profile consumes more energy 

overall than the baseline (negative values in the Percentage Difference Residual 

column), yet yields a cost reduction of approximately 8.8% at the district level. This 

outcome highlights how strategic load shifting can produce monetary savings 

even if total consumption increases slightly. Over time, these results could be 
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further refined by encouraging a zero net energy difference to reduce the negative 

residual values. 

It is also worth noting that the agent exhibits performance similar to the Greek pilot 

case because the same hyperparameters and penalty functions were used in both 

scenarios. Nonetheless, these findings demonstrate the scalability of the approach: 

the RL agent can handle situations where a node consists of multiple buildings, 

each with individual constraints, while still meeting higher-level DSO requirements. 

Moving forward, additional metrics—such as the percentage of the Aggregated 

Decision that precisely aligns with the DSO request and a more explicit measure of 

thermal comfort impact—will be introduced. Preliminary observations, however, 

indicate that the agent effectively balances grid demands, cost savings, and user 

comfort at this aggregated district level. 

Table 3. Percentage difference in cost and residual consumption for each building in 
the multi-building node scenario, compared to the baseline. 

Building 
Percentage 

Difference Cost 
(%) 

Percentage 
Difference 

Residual (%) 

1 10.1 -1.6 
2 8.2 -5.3 
3 8.1 -5.4 

 

Table 4. Aggregated cost and consumption differences at the district level, 
summarizing the overall performance of the three-building node scenario relative to 
the baseline. 

District 
Percentage 

Difference Cost 
(%) 

Percentage 
Difference 

Residual (%) 

District Level 8.8 -3.99 
 

3.2.3.4 Next Steps 

The following steps are planned to further refine and scale the Aggregated 

Demand Portfolio Manager:  

• Refinement of incentive structures and reward function: Optimize discount 

policies to ensure that the full discount is applied only when DSO requests 

are fully met, with linear interpolation used for partial compliance. At the 
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same time, reformulate the reward function to support different policies and 

better guide the agent’s decision-making. 

• Zero net energy targeting: Modify reward functions and adjust agent 

parameters to aim for zero net energy difference over the day, reducing the 

negative residual consumption values. 

• Enhanced performance metrics: Incorporate additional metrics such as the 

percentage of the aggregated decision aligned with DSO requests and 

explicit thermal comfort penalties to better quantify performance. 

• Scalability and robustness testing: Evaluate the tool’s performance in larger, 

multi-building district scenarios. Also, adjust hyperparameters and penalty 

functions to handle more complex energy systems. 

• Integration of additional pilot data: Expand the evaluation to include data 

from additional pilot cases, enhancing the robustness of the results. Also, 

transition from simulated data to real-world pilot data if feasible to validate 

the system’s effectiveness under actual operating conditions. 

• Integration with Task 4.6: Collaborate with Task 4.6 to ensure seamless 

interoperability with other components of the EVELIXIA platform, enhancing 

overall decision-making and grid management capabilities. 
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4 CONCLUSIONS 

This deliverable reports on the development of the Autonomous District Digital 

Twin (ADDT) within the EVELIXIA Grid-to-Building (G2B) Services Framework, 

designed for validating various scenarios at the district level in a virtual testbed. The 

ADDT expands the Buildings as Active Utility Nodes (BAUNs) concept to entire 

districts, enabling effective scenario testing, energy profiling, optimized energy 

management, and maintenance strategies across multiple building nodes and grid 

networks. 

Two primary objectives have guided this deliverable. The first objective involves the 

development of EVELIXIA's Network Awareness and Forecasting Framework 

(NAFF), which includes innovative solutions such as Multi-Vector Grids Energy 

Modelling and Simulation (IS15) – an intelligent Virtual Network (iVN) model 

facilitating city or community-level energy distribution simulations – and the Multi-

Vector Smart Grid Maintenance Service (IS14), enhancing predictive maintenance 

through asset health monitoring and maintenance optimization simulations. 

The second objective addresses the development of EVELIXIA’s Autonomous 

District Decision Support Framework (ANDSF). It comprises the Grid Investment 

Planning Assistant Service (IS11), supporting strategic long-term planning through 

proactive identification of future network bottlenecks via comprehensive Cost-

Benefit Analysis (CBA); the Multi-Vector Energy Network Manager Service (IS12), 

offering grid operators solutions for local congestion management through 

flexibility-driven actions; and the Aggregated Demand Portfolio Manager Service 

(IS13), facilitating aggregators’ active participation in energy balancing markets 

through demand portfolio optimization. 

The outcomes of tasks T4.3 and T4.4 demonstrate potential for applicability across 

diverse network contexts and operational environments. The developed models 

and frameworks, through their generalizable structure and adaptability to specific 

stakeholder needs, underline a solid foundation for replication and scalability. 

Moving forward, efforts will be focused holistically on implementing, validating, and 

integrating all developed services within a cohesive, operational ecosystem. 

Essential to this integration are structured data exchange processes facilitated 

through the EVELIXIA Services Broker, ensuring seamless interaction between 

simulation engines, decision-support services, and real-time data streams. An 
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emphasis will be placed on validation through iterative collaboration with 

stakeholders such as system operators, aggregators, and utilities, to co-develop 

scenarios, define operational parameters, and refine tools through real-world 

insights. Additionally, addressing identified barriers – including data heterogeneity, 

integration complexity, service interconnections, and operational variability – will 

be crucial. Continued partners’ engagement and access to real mandatory 

operational data from the networks under study, are necessary to ensure successful 

implementation, scalability, and adoption of the proposed innovative solutions.  
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6 ANNEXES 

6.1 Annex 1 

Modified IEEE 33-bus test system, adapted for GIPA test-run analysis (Section 
3.2.1.3). The configuration is implemented in MATPOWER v8.0 using the following 
data structures in MATLAB R2024a: 
 
function mpc = case33_modified 
%CASE33_MODIFIED  Modified 5-bus distribution test system in MATPOWER format 
  
%% MATPOWER Case Format : Version 2 
mpc.version = '2'; 
 
%% System MVA base 
mpc.baseMVA = 100; 
 
%% Bus data 
%  [bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin] 
mpc.bus = [ 
    1   3   0    0     0   0   1   1.0  0   12.66  1   1.05  0.95;  % Slack bus 
    2   1   5    2.5   0   0   1   1.0  0   12.66  1   1.05  0.95;  % Medium-sized load center 
    3   1   8    4.0  0   0   1   1.0  0  12.66  1  1.05  0.95; % Industrial/commercial load center 
    4   1   3    1.5   0   0   1   1.0  0   12.66  1   1.05  0.95;  % Residential/mixed-use load center 
    5   2   0    0    0   0   1   1.0  0   12.66  1   1.05  0.95;  % Renewable energy injection 
]; 
 
%% Generator data 
%  [bus Pg  Qg  Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max 
Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf] 
mpc.gen = [ 
    1   0   0   500  -500  1.0 100 1  100  0  0  0  0  0  0  0  10  10  30  0  0;   
% Slack bus generator 
    5  -10  0   500  -500  1.0 100 1  0   -10 0  0  0  0  0  0  10  10  30  0  0;   
% Renewable energy source 
]; 
 
%% Branch data 
%  [fbus tbus r      x      b rateA rateB rateC ratio angle status angmin angmax] 
mpc.branch = [ 
    1   2   0.0922    0.0470   0   100  100  100  0     0     1      -360  360; 
    2   3   0.4930   0.2511      0   100  100  100    0     0     1      -360  360; 
    3   4   0.3660   0.1864    0   100  100  100  0     0     1      -360  360; 
    4   5   0.3811     0.1941      0   100  100  100      0     0     1      -360  360; 
]; 
 
%% Generator cost data 
%  [type startup shutdown n c(n-1) ... c0] 
mpc.gencost = [    2  0  0  3  0.02  2.0  0; ]; 
end  


