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EXECUTIVE SUMMARY

The present deliverable reports on the development of the Autonomous District
Digital Twin (ADDT) within the EVELIXIA Grid-to-Building (G2B) Services
Framework. ADDT expands the Buildings as Active Utility Nodes (BAUNSs) concept
to district-scale applications, enabling validation of various scenarios in a virtual
environment; the proposed framework targets to promote an automated decision-
making processes for enhanced energy management, system planning, operation,

and maintenance at the grid level.

The report outlines two coupled objectives. The first objective is the development
of EVELIXIA's Network Awareness and Forecasting Framework (NAFF), featuring
two Innovative Solutions (IS). The first one, namely the Multi-Vector Grids Energy
Modelling and Simulation (IS15), provides a high-level intelligent Virtual Network
(iVN) for city or community-level energy distribution simulations without requiring
detailed physical grid models, thus enabling effective scenario testing and energy
profiling. The second one, namely the Multi-Vector Smart Grid Maintenance Service
(IS14), complements the district-level digital twin concept by extending the iVN
capability to perform predictive maintenance analysis across multi-vector

networks.

The second objective addresses the creation of EVELIXIA's Autonomous District
Decision Support Framework (ANDSF), incorporating tools designed to support
decision-making at the district and grid levels. The Grid Investment Planning
Assistant Service (IST1) facilitates long-term strategic planning through proactive
identification and evaluation of future network bottlenecks via comprehensive
Cost-Benefit Analysis (CBA). The Multi-Vector Energy Network Manager Service
(IS12) supports grid operators by effectively managing local congestion with
flexibility-driven solutions that adhere to operational constraints. Additionally, the
Aggregated Demand Portfolio Manager Service (IS13) enables energy aggregators
to dynamically manage demand portfolios, aggregating building-level demand

flexibility to actively participate in energy balancing markets.

The integration of NAFF and ANDSF results in a comprehensive digital twin
framework, targeting the needs of grid/network operators, energy aggregators,

utilities, and other actors managing multi-building portfolios.
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The outcomes of the present deliverable correspond to the activities of Tasks 4.3
and 4.4 of WP4, as performed up to M18 of the project. The developed and reposted
ISs demonstrate potential for replication across diverse network scenarios, with
methodologies designed for adaptability, thanks to the generalization of models,

coupled with multi-target simulation and data-driven methods.

This deliverable serves as the first milestone towards the development of the
building blocks of the EVELIXIA services layer that will be deployed in real-world
applications; in light of this, further steps towards the final version of the innovative
solutions (up to M33) should focus on iterative engagement with grid-level actors
of the project, including system operators and aggregators, to co-define scenario
development and parameters’ definition, as well as real-world data access. On the
other hand, effort should be made to the successful integration of heterogenous
data, multiple interconnected innovative solutions within the project and variable

operational environments into compact solutions.
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ABDT Autonomous Building Digital Twin
ADDT Autonomous District Digital Twin
ANDSF Autonomous District Decision Support Framework
BaU Business-as-Usual

BAUNSs Buildings as Active Utility Nodes
BCR Benefit-Cost Ratio

BESS Battery Energy Storage Systems
CAPEX Capital Expenditure

CBA Cost-Benefit Analysis

DDT District Digital Twin

DERs Distributed Energy Resource(s)
DG Distributed Generation

DR Demand Response

DSO(s) Distribution System Operator(s)
ETS Emissions Trading System

G2B Grid to Building

HI Health Index

HP(s) Heat Pump(s)

IS Innovative Solution

iVN i(ntelligent) V(irtual) N(etwork)
MV Medium Voltage

LP Linear Programming

LV Low Voltage

NAFF Network Awareness and Forecasting Framework
NPV Net Present Value

NRA(s) National Regulatory Authoritie(s)
OPEX Operational Expenditure

PV Photovoltaic

REG Renewable Energy Generation
THD Total Harmonic Distortion

ToU Time-of-Use

TRL Technology Readiness Level
TSO(s) Transmission System Operator(s)
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1 INTRODUCTION AND OBJECTIVES

1.1 Scope and objectives

The main scope of the current deliverable is to report the development of the grid-
equivalent Autonomous District Digital Twin (ADDT) under the EVELIXIA Grid-to-
Building (G2B) Services Framework, allowing for validating different scenarios at
the district level in a virtual testbed. ADDT extends the Buildings as Active Utility
Nodes (BAUNS) vision to districts and aims to optimize energy management at a

district scale.

In this context, two main objectives have been identified, as follows:

Objective I: To develop the EVELIXIA's Network Awareness and Forecasting
Framework (NAFF). Towards this objective, a high-level district modelling tool for
performing simulations of city/community-level energy distribution networks
(intelligent Virtual Network —iVN, IS15) is built for the detailed network-level energy
profiling, using energy conservation and power-flow analysis, across multiple
energy vectors. A multi-vector smart grid maintenance service (IS14) is also
developed to extend the capabilities of iVN engine, to assess the health level of
multi-grid related assets, when connected to energy networks. The activities and
progress of this objective is described in Section 2 of the present document.
Objective 2: To develop the EVELIXIA’'s Autonomous District Decision Support
Framework (ANDSF). Towards this objective, the simulation capabilities of the iVN
will be leveraged to create a set of decision-making and support services at the
district/grid level, including the Grid Investment Planning service (IS11), the Multi-
vector Network Management services (IS12) and the Aggregated Demand Portfolio
Management services (IS13). These services focus on grid stakeholders (grid
operators, energy aggregators, retailers, etc.), providing services from the Grid to
the Building that could mutually benefit both sides. The activities and progress of

this objective are described in Section 3 of the present document.

The interaction of the two objectives (frameworks) results in the EVELIXIA
Autonomous District Digital Twin (depicted in Figure 1), aiming to cover the needs
of Energy Aggregators, Utilities and any actor managing a portfolio of several

building nodes.

EVELIXIA — D4.3 EVELIXIA Autonomous District Digital Twins 13
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5"}\utonomous Network Decision Support Framework."'"g EVELIXIA Autonomous
: District Digital Twin

Grid Investment Planning

Multi-vector Network Manager

Aggregated Demand Partfolio Manager

Network Awareness & Forecasting Framework

|

Figure 1. EVELIXIA Autonomous District Digital Twin Concept

1.2 Structure

The structure of the deliverable is as follows:

e Chapter 2 presents the work performed within T4.3 on the development and
implementation of the Network Awareness & Forecasting Framework under
the G2B Services Framework, highlighting its contribution to the broader
EVELIXIA ADDT solution detailing the development of IS14 and IS15.

Chapter 3 describes the work performed within T4.4 on the development of
the innovative solutions IST11, IS12 and IS13, supporting the EVELIXIA ADDT

framework.

Chapter 4 summarizes the main conclusions for both tasks (T4.3 & T4.4) and
discusses the future steps towards the next version of the present

deliverable, i.e., by the end of the task in M33 of the project lifetime.

1.3 Relation to Other Tasks and Deliverables

D4.3 is directly linked to the activities foreseen in Task 4.3 and Task 4.4,
consolidating all foreseen technical developments on situation awareness,
forecasting and autonomous decision-making mechanisms at district and network
levels. This report is considered as the first version of D4.4, which will focus on
refining the context of the ISs developed in Tasks 4.3 and 4.4 according to the

experience acquired from the pilots’' implementation and tests’ validation.

EVELIXIA — D4.3 EVELIXIA Autonomous District Digital Twins 14
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2 EVELIXIA'S NETWORK AWARENESS AND
FORECASTING FRAMEWORK (NAFF)

The increasing complexity of modern energy systems, driven by the integration of
diverse energy vectors (electricity, thermal, gas), the widespread adoption of
distributed energy resources (DERs), and the evolving role of consumers as active
participants in energy markets, necessitates advanced tools for network awareness
and forecasting. Grid operators, energy aggregators, and utilities face significant
challenges in ensuring efficient, resilient, and flexible energy systems capable of
accommodating these dynamic changes. To address this, EVELIXIA's NAFF plays a
pivotal role in enhancing situational awareness, enabling predictive maintenance,

and supporting informed decision-making across multi-vector energy networks.

Chapter 2 reports the work performed within T4.3 on the development and
implementation of the NAFF under the G2B Services Framework, highlighting its
contribution to the broader EVELIXIA ADDT solution. The ADDT is designed to
extend the BAUNs concept to the district level, fostering inter-building energy
optimization and facilitating automated decision-making for holistic energy
management. Unlike traditional digital twins that often require extensive
digitization of physical grid assets, the EVELIXIA ADDT adopts a building-centric
approach, leveraging aggregated building data, occupant patterns, utility signals,
and DER integration to optimize energy exchanges and enhance overall system

flexibility.
The chapter is structured as follows:

e Section 2.1: Introduction - Provides the context, objectives, and importance
of the NAFF within the EVELIXIA project, including the interplay between the
NAFF and the ANDSF.

e Section 2.2: EVELIXIA District Digital Twin - Solution Design Overview -
Offers a detailed description of the ISs developed within T4.3 along their

objectives, methodology, results and next steps.

o Section 2.2.1: Multi-Vector Grids Energy Modelling and Simulation
solution (IS15)

o Section 2.2.2: Multi-vector Smart Grid Maintenance service (IS14)

EVELIXIA — D4.3 EVELIXIA Autonomous District Digital Twins 15
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2.1 Introduction

The global push for decarbonization, decentralization, and digitalization in energy
systems is transforming the way energy networks are planned, operated, and
maintained. The widespread adoption of DERs, the increasing participation of end-
users in energy markets, and the growing complexity of multi-vector energy
systems call for solutions that can deliver real-time awareness, accurate
forecasting, and optimized decision-making.

Digital Twin (DT) technologies have emerged as a promising response to these
challenges. Traditionally, DTs represent virtual replicas of physical assets, enabling
simulations, real-time monitoring, and predictive analytics for enhanced
operational efficiency. In the energy sector, DTs have been widely applied to model
physical grids, offering valuable tools for asset management, grid planning, and
fault detection. Leading technology providers, such as Siemens (PSS), GE Digital
(Grid Solutions), OPAL RT, ALTAIR, and ANSYS, have developed comprehensive DT
platforms supporting these applications. Several European Transmission System
Operators (TSOs), including Finland's Fingrid and the Netherlands’ TenneT, have
implemented DT solutions to improve their grid operations, maintenance, and
asset management processes.

Despite their effectiveness, conventional grid-focused DT solutions often require
extensive data collection and detailed digitization of physical assets, which can be
cost-prohibitive and complex to scale. Additionally, many existing platforms
emphasize single-vector energy systems, overlooking the growing importance of
multi-vector interactions and decentralized energy management at the district
level.

Recognizing these gaps, the EVELIXIA project has developed an innovative
approach through the EVELIXIA ADDT. Rather than focusing solely on the physical
grid, the ADDT emphasizes building energy digital twins and aggregated district-
level data to model energy exchanges and consumption patterns. This approach
minimizes the need for extensive grid digitization while enabling accurate
simulations and optimizations of multi-vector energy flows. The ADDT integrates
information from buildings, DERs, occupant behaviors, utility signals, and weather

forecasts to deliver comprehensive energy management services.

EVELIXIA — D4.3 EVELIXIA Autonomous District Digital Twins 16
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The ADDT is underpinned by the synergy between two core frameworks:

e Network Awareness and Forecasting Framework (NAFF): Provides
capabilities for detailed energy profiling, predictive maintenance, and
simulation across electricity, thermal, and gas networks.

e Autonomous Network Decision Support Framework (ANDSF): Utilizes
data from the NAFF to support decision-making in grid investment
planning, network management, and demand portfolio optimization.

This interplay enables a two-way, transactive energy system where buildings not
only consume but also actively respond to grid signals, facilitating demand-side

flexibility and improved energy efficiency across the district.

2.2 EVELIXIA district digital twin - Solution Design Overview

As mentioned above, T4.3 focuses on the development of the following ISs:

= Multi-Vector Grids Energy Modelling and Simulation solution (IS15): A high-level
modeling tool that simulates energy distribution without requiring detailed
physical grid modeling, enabling virtual testing of district-level control scenarios.

=  Multi-Vector Smart Grid Maintenance Service (IS14) to assess the health of grid-

related assets and supports predictive maintenance strategies.

These services are presented in detail in the following subsections.

2.2.1 Multi-Vector Grids Energy Modelling and Simulation solution
(1S15)

The Multi-Vector Grids Energy Modelling and Simulation solution (IS15) developed
by IES within the EVELIXIA project is based on the IES intelligent Virtual Network
(iIVN) software. The iVN is a high-level district modelling tool for performing
simulations of city or community-level commodity distribution networks.
Specifically, it performs Hierarchical Demand Aggregation and Supply Allocation;
the iVN aggregates the demand for particular commodities, such as Electricity and
Heat and allocates supplies (provision) to specific providers in order to meet the
demand. The iVN can also perform physics simulations of PV panels, wind turbines
and other renewable energy technologies, perform energy balance calculations,
take into account existing storage provisions, track the use of Fuels and other
Commodities (such as Water), estimate the impact of changes in tariffs and

calculate CO, emissions associated with the direct consumption of fuels and the

EVELIXIA — D4.3 EVELIXIA Autonomous District Digital Twins 17
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indirect CO; emissions resulting from the consumption of electricity, heat and

cooling.

The main purpose of the iVN is to assist utility operators, policy makers and
engineers with city or district-level decision making with regards to the supply and
management of natural and man-made resources and the devices that make that
possible. Specifically, it can inform users of the current performance of various

utilities and quantitatively predict the impact of changes to city-infrastructure.

Unlike traditional urban-scale modelling tools, iVN employs a hybrid approach that
combines 3D building geometry models with 2D schematic representations of
energy distribution infrastructure. The software is designed to optimize energy
distribution at a city/community level by aggregating demand and allocating loads

to providers efficiently.

Within EVELIXIA, iVN is further enhanced to integrate real-time building energy
demand data and digital twin instances, ensuring a bottom-up approach to urban-
scale energy modelling. The key advancement is the ability to federate individual
building digital twins into a platform-level digital twin, enabling a more holistic

optimization strategy for energy networks.

2.2.1.1 Objectives

IS15 is designed to support network operators, urban planners, and policymakers
by facilitating scenario-based analysis that enhances decision-making on energy
distribution, flexibility, and infrastructure investments.

IS15 - Technical Objective: To transition frorn TRL5 to TRL7, IS15 will aim at
improving its functionality, reliability, and real-world applicability. Initially designed
as a high-level district modelling tool, the solution will be expanded to integrate
real-time energy data from buildings, distribution networks, and external grid
operators, ensuring a more dynamic and accurate representation of energy flows.
A key enhancement involves the federated digital twin approach, where multiple
building-level models will be aggregated to create a holistic district-wide
simulation, capturing the complex interplay between various energy vectors.
Additionally, IS15 will introduce advanced automation mechanisms, enabling
periodic, physics-based simulations to run autonomously based on predefined

triggers, minimizing the need for manual intervention. The platform’s

EVELIXIA — D4.3 EVELIXIA Autonomous District Digital Twins 18
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interoperability will also be reinforced through standardized data exchange
protocols, allowing seamless integration with other EVELIXIA ISs, such as IS12
(Multi-Vector Network Manager) and IS14 (Smart Grid Maintenance Service). By
embedding predictive analytics and demand-response modelling, IS15 will not only
support energy planning but also enable real-time decision-making, ensuring that
urban energy networks operate more efficiently and sustainably.

IS15 - Scientific Objective: Beyond its technical advancements, IS15 will contribute
to scientific research on urban energy modelling by exploring multi-vector
interactions, predictive analytics, and decentralized energy management
strategies. A central focus of this research is to develop a deeper understanding of
energy flow dynamics at the district level, assessing how different energy carriers—
such as electricity, heat, and cooling—interact under varying conditions, including
extreme weather events and peak demand fluctuations. The project will also
investigate the impact of integrating RES and flexibility mechanisms on district-
level energy stability, contributing to decarbonization efforts and regulatory policy
development. The validation of IS15 in the pilot sites will provide a real-world
testbed for these scientific developments, ensuring that the models and
methodologies established can be effectively replicated and adapted across

different urban environments.

2.2.1.2 Methodology

The IS15 development follows a structured methodology comprising three key
phases:
1. Data Integration & Model Development

e Data Collection: Real-time and historical data are collected from various
sources, including building management systems (BMS), smart meters,
weather forecasts, and operational grid data.

e Building Digital Twin Federation: Individual building digital twins
modelled within VE software in T4.1 are integrated into the iVN software
to capture localized energy demand and generation profiles. This
bottom-up approach ensures the aggregated district-level model
accurately reflects building-level dynamics.

e Multi-Vector Network Model Construction: Commodity networks

(electricity, heat, cooling, water) are represented using a combination of

EVELIXIA — D4.3 EVELIXIA Autonomous District Digital Twins 19
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2D schematic infrastructures and 3D building geometries. These models
account for physical constraints, technical specifications of generation
units, storage devices, and energy conversion systems.

2. Simulation & Optimization

e Energy Flow Simulations: Simulations are run to model energy flows
across different vectors, considering demand-supply dynamics, weather
conditions, and operational constraints. Advanced physics-based models
are used for renewable generation technologies and storage units.

e Scenario Analysis: Multiple control scenarios, including extreme weather
conditions, equipment failures, and demand surges, are evaluated to
assess network robustness and flexibility.

3. Interoperability & Validation

¢ Ontology Alignment: To ensure seamless communication with other
EVELIXIA components, standardized ontologies are used for data
exchange, ensuring semantic interoperability.

¢ Pilot Implementation: The Greek demonstration site serves as the initial
validation environment, where simulations are compared against actual
operational data to calibrate and refine models.

e Continuous Feedback Loop: An iterative process ensures that
simulation outcomes inform subsequent model adjustments, enhancing

prediction accuracy and operational relevance.

2.2.1.3 Evaluation & Results

The evaluation phase of IS5 commenced with the Greek pilot site, focusing on a
simplified yet representative model of the local electricity and heat networks. The
goal of this initial phase was to validate the VN platform’s capabilities in
aggregating building-level demands, integrating renewable energy generation,
and simulating multi-vector energy flows at a district scale. Emphasis was placed
on ease of implementation while ensuring sufficient granularity to inform decision-
making processes.

The Greek pilot analyses 2 buildings, the Mpodosakeio Hospital and the
CERTH/CPERI building, located in the Northwestern part of Ptolemaida city in
Greece. Both buildings use district heating to cover their thermal loads, however,

in Mpodosakeio a system of installed solar thermals of total power 625kWth is used
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(for solar cooling), while in CERTH building, photovoltaic panels with a power of 10
kW is utilized and an additional system of 38 kW is planned to be installed (for
covering own electric loads). In the case study power line, 40-EORDEAS, there are
67 PV plants connected to the grid.

For the first iteration as a simplification of the grid, the simulation model was
configured around three primary electricity demand nodes (represented in yellow
in Figure 2):

e Electric Node 1: Aggregated electricity demand of all other energy users in
the study area beyond the two targeted buildings.

e Electric Node 2: Represents the simulated electricity demand of the
building modelled through digital twins developed in Task 4.1 (e.g., CERTH
building using IS5 outputs).

e Electric Node 3: Captures the electricity demand of the local hospital facility
(e.9., Mpodosakeio Hospital), given its significant and constant energy
consumption profile.

Then, as the 2 buildings’ thermal energy is covered by district heating, the heat
network is represented by the red heat nodes in Figure 2.

To streamline the modelling process while maintaining accuracy, the following
assumptions were adopted:

e Node 1 Aggregation: For this initial phase, Node 1 consolidates the total
demand from all other consumers in the study area.

e Network Configuration: The network’'s schematic representation prioritizes
elements critical to the analysis, with slight simplifications in the connection
map that can be refined in subsequent phases if needed.

e Photovoltaic (PV) Generation: An aggregated PV node was included to
represent the district’'s renewable electricity supply. This node assumes the
following parameters:

o 76 PV plants aggregated into a single generation node.

o Efficiency of 20% for each PV system.

o Total installed capacity of 9,710 kW with a uniform south-facing
orientation.

e Weather Data: Simulations utilized an aggregated Athens weather profile,
serving as a proxy for local climatic conditions affecting both demand and

renewable generation.
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Figure 2. Greek Pilot District Digital Twin simplified model in iVN

Simulation Workflow and Methodology

The evaluation was conducted through a multi-step process:

1. Building Digital Twin Development: The two key buildings (CERTH and the
hospital) were modelled using IS5, capturing detailed operational and
occupant-driven demand profiles.

2. Data Integration: Simulated demand profiles from IS5 were imported into

IS15 to establish accurate demand nodes within the district model.
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Figure 3. Energy Demand profiles (Electricity and Heat) associated to Node 3 -
Mpodosakeio Hospital within iVN

3. Network Configuration: A simplified VN network was developed,

incorporating the three demand nodes, the aggregated PV generation
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node, and a connecting electricity node to simulate supply-demand
interactions.

4. Renewable Energy Integration: The PV node was configured according to
the assumptions listed above to assess the impact of local renewable
generation on meeting district demand.

5. Weather Data Application: The model was subjected to hourly weather
inputs derived from the Athens profile to reflect real-world variability in
temperature, solar irradiance, etc..

6. Output Generation and Data Export: Simulation outputs were exported to
the iISCAN platform, ensuring accessibility for project partners. The data
included hourly readings in a tabular format covering:

e Carbon emissions per node

e Electricity demand (total and imported)
o Electricity generated by PV systems

e Heat demand for the relevant nodes

An example of the timeseries output in iVN can be seen in Figure 4 below.
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Figure 4. Total electricity demand per the total electricity node
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Below in Figure 5 is an example of the iISCAN interface displaying simulation
outputs. Users can interact with the data through customizable dashboards, filter

by node, and compare demand and generation trends over selected timeframes.

Figure 5. iVN simulated PV electricity generation viewed in iSCAN

2.2.1.4 Next steps

The next development steps for IS15 focus on expanding its capabilities through
integration, testing, and validation in real-world scenarios. The following roadmap
outlines key milestones:

1. Model the Future Scenario of the Greek Pilot: Implement the next phase
of IS15 simulations at the Greek pilot site, incorporating additional real-world
grid data and adding to the model the future assets that will be installed.

2. Replicate the Methodology to Other Pilot Sites: Apply the approach to the
other pilot locations within the EVELIXIA framework, ensuring
generalizability and adaptability to different urban contexts.

3. Progress on Integration with Other ISs:

e Establish connections between the DSM and the central data
repository: Ensure that I1S15-generated data is fully synchronized with
the EVELIXIA platform’s central repository. Develop secure and
automated data pipelines for continuous data transfer.

e Automate DSM output forwarding at required frequency: Implement
real-time DSM data transmission to ensure that IS15 can interact

dynamically with other ISs and external grid operators.
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e Implement automated trigger for periodic dynamic simulation:
Develop and test an automated triggering mechanism that periodically
initiates physics-based dynamic simulations based on predefined time
intervals or grid state changes. Ensure that simulations operate
autonomously and align with real-time network conditions.

e Test and validate simulation trigger stability: Conduct long-term
performance tests to evaluate whether the automated simulation
mechanism can maintain reliability and accuracy over extended periods.

e Validate DSM output transfer to the Central Data Repository: Perform
integration testing to confirm that all DSM-generated data is being
correctly archived and remains accessible for further analytics and
decision-making.

By following this structured development plan, IS15 will enhance its effectiveness
in urban energy modelling, predictive analytics, and demand-side management,

ensuring its practical applicability across multiple pilot sites.

2.2.2 Multi-Vector smart grid maintenance service (1S14)

The increasing integration of multi-grid related assets, such as Battery Energy
Storage Systems (BESS), photovoltaic (PV) systems, heat pumps (HPs), etc,, into
electrical networks requires a more efficient approach to maintain the reliability
and efficiency of the electrical grid, considering Medium/Low Voltage (MV/LV)
substations, and power lines maintenance planning. Traditionally, outage planning
for maintenance has been executed using fixed time-based strategies, often
leading to suboptimal scheduling, unnecessary maintenance, or failure to detect

critical asset deterioration in time.

To address this challenge, the Smart Grid Maintenance Planning solution leverages
live/real-time data collection, health assessment models, and predictive analytics
to ensure that maintenance activities are planned proactively rather than
reactively. This condition-based maintenance approach allows for early fault
detection, extending grid-connected assets’ life while minimizing disruptions and

preventing catastrophic failures.

Furthermore, the tool integrates with a Digital Twin environment (for the project,

the tool will be integrated with the iVN simulation engine), utilizing real-time/live
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sensor data to enhance maintenance decisions. By simulating assets’ behaviour
and predicting failure risks under different conditions, it provides actionable
insights for proactive maintenance strategies, thus improving the reliability and

efficiency of the grid.

The high-level overview of the tool is depicted in Figure 6.

District Digital Twin
e 0 . Smart Grid Maintenance Planning

/' Data Acquisition and Monitoring \

Requirements
Buildings’ Data acquisition system to collect
L, live/real-time and historical data from
Digital » DERs, HVAC systems, and other relevant
bullding and grid assets. Utllizes o7
sensors and smart moters for detailed

K maonitoring /

-

Analytics Engine
Processes and analyzes collected
data.

Hosts health assessment
algorithms, predictive models,
and optimization routines for

maintenance planning,

Twins

T —

Figure 6. High-level overview of the smart grid maintenance tool

In summary, by shifting from static time-based maintenance to predictive and
optimized scheduling, the tool enhances grid reliability, cost efficiency, and

operational continuity for system operators.

2.2.2.1 Objectives

IS14 - Technical Objective "TRL5 to TRL7": With original functionalities developed
and validated in the relevant environment of several past EU-funded projects (e.g.
ONENET GA No. 957739) the Smart Grid Maintenance solution is introduced to
EVELIXIA at TRL5. Advancing towards TRL6, a working version of IS14 is tested with
simulated transformer datasets and artificial faults’ injection, as it is further
described in Section 2.2.2.3. The final version of IS14 will undergo validation using
simulated or live data extracted by IS15 - "intelligent Virtual Network" (iVN) (see
Section 2.2.1), ensuring applicability to each pilot site network under study. As part
of EVELIXIA's platform integration, progressing towards TRL7 until the end of the
project, future efforts and refinements of the tool target demonstration of the
technology across EVELIXIA pilot sites, thus ensuring its applicability to support

real-world smart maintenance outage planning for multi-grid related assets.

IS14 - Scientific Objective: The Smart Grid Maintenance Planning solution is
designed to optimize maintenance scheduling for grid assets according to asset

criticality and health condition, dynamically adjusting schedules to address higher-
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risk components promptly. Specifically, the solution targets at minimizing grid
operational disruptions and improve efficiency in maintenance resource allocation,
via mathematical-based optimization that coordinates maintenance tasks
strategically, aligning relevant interventions with periods of low demand and

utilizing DERs and building flexibility assets.

2.2.2.2 Methodology

The core component of the Smart Grid Maintenance Planning is the Analytics
Engine, as depicted in Figure 7, integrating three discrete modules: data
processing, health assessment, and optimization-based maintenance planning.
These modules work in synergy to provide a proactive asset management
approach for grids, facilitating informed decision-making and optimized

maintenance scheduling, as described in the following paragraphs.

Analytics Engine

Data Processing Module
Data Cleaning: Handle missing data, detect and correct outliers
Data Normalization: Standardize features
Identify critical operational indicators

\ 4

/ Health Assessment \
Diagnostics: Analyze current asset condition using performance and
operational metrics
Health Prediction: Estimate asset health index, forecast failures based
on real-time and historical data
Model Training & Validation: Train, validate, and periodically update

\ predictive models /

\ 4

/ Optimization Routines for Maintenance Planning \
Priority-based Scheduling: Schedule tasks based on health index,
asset criticality, and risk factors
Mathematical Optimization: Deploy linear programming to optimally
allocate resources and minimize downtime
Fault-driven Task Assignment: Automatically classify and assign tasks
\ according to identified anomalies /

Figure 7. Smart Grid Maintenance Planning methodology - Analytics Engine
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streams, encompassing various parameters relevant to each asset. This step
ensures data completeness, proper formatting, and suitability for subsequent
analysis. The preprocessing includes handling missing data via imputation
techniques, encoding categorical features appropriately, and identifying outliers
indicative of potential asset faults. To ensure uniformity across features, z-score

normalization [1] is applied as follows:

X - Fq.2.2.21
o

Xl
where X' is the normalized data value, X is the raw input data, y is the mean value

of the feature across the dataset and o is the standard deviation of the feature.

This normalization ensures that data features are standardized for use in predictive

models.
Health Assessment

The tool deploys machine learning models for predicting asset health status of
critical grid components. The predictive models use real-time sensor data and

historical trends to assess degradation.

A general regression model for estimating asset Health Index (HI) can be expressed

as follows:

HI, = f(X,) + ¢ Eq.2222

where Hl; is the estimated Health Index at time t, f{-)’ denotes the trained machine
learning model that predicts asset HI based on operational features [2], X: is the

feature vector comprising asset-specific operational parameters (e.g. voltage,

"The choice of /{-) depends on the available data (size, quality, and historical depth) and
computational constraints (real-time inference vs. batch processing) and accuracy
requirements (interpretability vs. prediction precision). Linear regression is simple but
limited in capturing nonlinear degradation. Random Forests provide high interpretability
but may struggle with very large datasets. Gradient Boosting offers high accuracy but
requires careful hyperparameter tuning. Neural Networks handle highly nonlinear
relationships but require large training data.
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current, temperature, etc.), and e (epsilon) accounts for the model uncertainty

(residual error term).

The estimation of HI is guided by asset-specific degradation factors which
accelerate asset aging. A lower Hl value indicates worsening asset condition, while
a higher HI suggests the asset is in good health. Assets with HI values below a

predefined threshold are prioritized for proactive maintenance scheduling.

To ensure that only relevant features are included in the health index estimation, a
correlation-based feature selection approach is applied, based on the Pearson
Correlation Coefficient Formula [3]. A correlation matrix for key operational
parameters is computed to understand dependencies between the different
operational features. Features with high positive correlation to degradation
indicators negatively impact HI, whereas features with high negative correlation

indicate operational stability

In real world implementation, the model is periodically retrained with updated
datasets to dynamically adapt to evolving grid conditions, ensuring continuous

improvement in HI predictions and maintenance prioritization.
Maintenance Scheduling Optimization

Once asset degradation is identified, the tool optimizes maintenance scheduling
using Linear Programming (LP) to minimize service impact while ensuring that
critical maintenance tasks are prioritized. The optimization problem is formulated

as follows:

min Z§V=1 23=1 Wix; q Eq.2223

where X4« is a binary decision variable (1 if maintenance task i is scheduled on day

d, O otherwise), Wi is the task priority weight, computed as follows:

W, = % P, Eq.222.4

where Hl; reflects asset condition urgency (lower HI means the asset is closer to
failure), and P; represents the criticality score quantifying the asset’s impact on grid

reliability.

N represents the number of assets under study, while D represents the number of

days in the scheduling horizon.
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The optimization problem is subject to the following constraints:
= Each maintenance task is scheduled exactly once:

Yh ixqa=1Vi€EN Eq.2225

=  Maximum number of maintenance tasks per day:

YN xq <M, Vd €D Eq.2226
where M represents the maximum number of maintenance tasks that can be

executed per day due to resource constraints.
= Task scheduling constraint within the planning horizon:

xiqa €{0,1}, Vid Eqg. 2227
The solution to this optimization problem provides an optimal maintenance
schedule that ensures the most critical tasks are executed first while balancing

operational constraints.

To improve scheduling efficiency, maintenance tasks are classified based on the
detected anomalies. This ensures that each failure type is matched with an
appropriate maintenance intervention (e.g., cooling system maintenance for assets
with overheating anomalies, such as high winding temperatures in transformers,
etc.). Different grid assets experience distinct degradation mechanisms, thus asset-

specific classification rules must be adapted accordingly.

Additionally, to further refine priority scores, correlation analysis is introduced to
adjust maintenance urgency based on feature dependencies. The revised task

priority weight can be formulated as follows:

W' =w,1+%;C)) Eq.2228
where Cj; denotes the absolute correlation between the operational parameter i

and other grid health indicators. This ensures that maintenance urgency increases

when the asset’s degradation is linked to multiple failure-related variables.
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2.2.2.3 Evaluation & Results

To validate the operation of the smart grid maintenance tool, a test-run is
conducted on simulated transformer datasets. This process ensures that real-time
and historical asset data are structured, analyzed, and validated before moving to
predictive modeling and optimization-based maintenance scheduling. It is noted
that in this deliverable, only electricity network components are examined,
although the methodology can be applicable to assets related with multi-energy

networks, if such data is available.

The dataset used for this validation reflects real-world operational conditions of two
MV/LV distribution transformers (namely Transformer 2 and Transformer 3). It
consists of hourly measurements over a defined period and includes both normal
operation data and artificial faults to evaluate the tool's ability to detect anomalies
and optimize maintenance actions. The recorded parameters include operational
variables that can be measured from actual transformers, such as Voltage (V),
Current (A), Active Power (kW), Reactive Power (kVAR), Apparent Power (kVA),
Power Factor, Frequency (Hz), Total Harmonic Distortion (THD, %), Ambient
Temperature (°C), Winding Temperature (°C), Oil Temperature (°C), Energy
Consumption (kWh) and Load Profile (%). The injected faults include overheating
events where the winding temperature exceeds 90°C, voltage drops where voltage
falls below 210V (reflecting the European grid’'s nominal 230V voltage levels), and
power quality issues characterized by THD levels above 7%. These fault conditions
mimic real grid disturbances and stress conditions that impact transformers’
health, thus allowing to assess the effectiveness of the anomaly detection and

Mmaintenance optimization processes.

The reason for including two transformers for this test-case is to prove the tool's
ability to analyze and optimize maintenance scheduling for several grid
components, as is the real case. In the test-run, each transformer's dataset is
processed independently, ensuring that transformer-specific degradation trends

and failure risks are accurately captured.

Before using the dataset for predictive modeling, a preprocessing step was applied
to clean and structure the data. Missing values were handled appropriately:
numerical values were filled with zeros where applicable, while categorical and

timestamp values were interpolated using previous data points to maintain
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continuity. Timestamps were formatted consistently to ensure proper time

indexing for trend analysis.

Additionally, several condition indicators were derived to enhance the dataset's
analytical value. The health status was estimated based on the thermal stress
impact on the transformer, using deviations in winding and oil temperature from
nominal values? [4], [5]. The criticality score was dynamically scaled based on
voltage stability and load profile, while a priority index was assigned based on
Health Index [6] ensuring that assets closer to failure received higher maintenance

urgency.

The results from this data processing are presented in Figure 8, Figure 9, Figure 10,

Figure 11, Figure 12 and Figure 13.

2 Transformer aging is predominantly driven by thermal stress, particularly due to high
winding temperatures. The insulation system inside transformers degrades over time due
to heat exposure, reducing the ability to withstand electrical and mechanical stresses.
According to IEEE Std. C57.91-2011 and IEC 60076-7, insulation aging is exponentially related
to temperature. Thermal models, such as the Arrhenius equation and IEEE aging formulas,
suggest that the rate of degradation doubles for every 6-8°C increase in winding
temperature above the reference operating condition (typically 110°C for oil-immersed
transformers). The loss of insulation life can be estimated based on the cumulative effect of
overheating. The HI estimation formula is derived from the thermal deviation of winding
and oil temperature from nominal operational values, following a linear degradation
approach, where each degree of overheating reduces the remaining insulation life. This
aligns with transformer health assessment methodologies used in predictive maintenance.
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Figure 8. Distribution of different parameters’ values based on the simulated datasets
for transformer 2
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Figure 9. Distribution of different parameters’ values based on the simulated datasets
for transformer 3
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for Transformer 2 ranged from 61.25°C to 99.39°C, while Transformer 3 exhibited
values between 61.22°C and 98.85°C. Peak temperatures exceeding 95°C indicate
potential overheating risks, warranting close monitoring. The oil temperature for
Transformer 2 varied between 59.25°C and 71.32°C, while for Transformer 3, it ranged
from 59.34°C to 70.72°C. Although oil temperature remained relatively stable, its
correlation with winding temperature fluctuations suggests thermal stress

accumulation.

Calculated HI values confirmed these observations. Transformer 2 presented HI
values from 0.61 to 0.99, while Transformer 3 ranged from 0.47 to 0.91. Lower HI
scores approaching 0.5 suggest substantial health degradation, signaling a need

for timely intervention and proactive maintenance® [7].

Moreover, the temperature histograms for the two transformers depicted in Figure
10 and Figure 11 present clear signs of overheating, particularly in winding
temperature distributions. Time-series trend plots highlighted frequent and sharp

spikes in winding temperature, indicative of severe load fluctuations.

3 Industry standards indicate that transformers typically have a design life of 25-40 years,
but this is contingent on normal operating conditions. However, actual transformer lifespan
is significantly impacted by operational stresses, particularly thermal conditions.
Transformers exhibiting a Health Index (HI) of 0.5 or lower represent advanced degradation
stages, sighaling substantial insulation deterioration and reduced reliability. Assets in this
range necessitate close monitoring, timely preventive maintenance, or strategic planning
for replacement to prevent failure. Following guidelines such as C57.91-2011 (IEEE) and IEC
60076-7, transformers showing continuous deviations from nominal thermal conditions,
reflected in low Health Index values, must be prioritized for intervention to avoid
catastrophic failures and minimize the risk of unplanned outages.
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Figure 10. Temperature histogram based on the simulated datasets for transformer 2
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Figure 11. Temperature histogram based on the simulated datasets for transformer

Furthermore, the three-dimensional scatter plots in Figure 12 and Figure 13

illustrate the relationship between voltage, load profile, and criticality score

demonstrating how high load stress and voltage fluctuations contribute to

increased criticality scores. This visualization is particularly useful in identifying

transformers under severe operational stress that may require prioritization in

Mmaintenance schedules.
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Figure 12. 3-D scatter plot illustrating the relationship between voltage, load profile, and
criticality score based on the simulated datasets for transformer 2
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Figure 13. 3-D scatter plot illustrating the relationship between voltage, load profile, and
criticality score based on the simulated datasets for transformer 3

With the completion of the data processing stage, predictive modeling was
conducted to estimate transformer health status using historical and live/real-time
(simulated) operational parameters.

A Regression Bagged Ensemble model was selected for predictive modeling,

implemented using MATLAB 2024a - fitrensemble function [8]. This ensemble
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model, utilizing a Bootstrap Aggregating (Bagging) approach, was selected for its
robustness against variance and its ability to handle fluctuations common in
transformer sensor data. Specifically, multiple decision trees were trained and
combined to provide stable and accurate predictions of the transformer Health
Index [9].

The training features included key operational parameters: Voltage, Current, Active
Power, Reactive Power, Apparent Power, Power Factor, Frequency, Energy
Consumption, Load Profile, Ambient Temperature, Winding Temperature, and Oil
Temperature. The target variable for prediction was the HI, as calculated in the data
processing step, reflecting transformer health status based on deviations from

nominal thermal conditions.

The datasets were split into 80% for model training and 20% for model testing,
ensuring a rigorous and unbiased assessment. For Transformer 2, the predictive
model achieved an RMSE of approximately 0.05, demonstrating high accuracy in
estimating transformer health. Similarly, Transformer 3 achieved the same RMSE,

indicating consistent model performance across different datasets.

The results for the two transformer datasets under study are presented in Figure 14
and Figure 15, presenting a comparison between actual and predicted Health Index
values through scatter plots. These plots confirmed a strong correlation between

actual and predicted values, with minimal deviations from the ideal reference line.
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Figure 14. Comparison between actual and predicted Health Index after the training of
the predictive model for the simulated datasets for transformer 2
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Figure 15. Comparison between actual and predicted Health Index after the training of
the predictive model for the simulated datasets for transformer 3

After the predictive model is now trained, the next step is Anomaly Detection,
where it is evaluated whether the model's predictions deviate from expected
trends and detect abnormal behavior in transformer operations. The analysis in this
test-case focused on monitoring voltage stability, thermal stress in winding

temperatures, and power quality issues related to THD. For this test, the voltage
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threshold was set at 207V, consistent with operational standards, while winding

temperatures above 90°C and THD levels exceeding 7% were flagged as anomalies.
The detection process revealed a significant number of abnormal events in both
transformers, with each one recording 53 voltage anomalies, 87 temperature
anomalies, and 44 THD anomalies. This resulted in a total of 184 identified

anomalies per transformer, as depicted in Figure 16 and Figure 17.
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Figure 16. Identified anomalies based on the simulated datasets for transformer 2

Transformer 3 - Volage
a0}
|
: I
> N0 -
?;‘ =~ dan iz J-’}ﬁ I
Time 0
*o 3 - Winding T M g - Anomatos: 87
- | omm 9% = ® | w s = 1 ———
ol -
g m o Ty A | A | ™ | . . Lol |
g ’“‘7 TR Sy Y g \"\" AV / '_""4 | WS- | Y My My 4
i i s 2 J-:}D
Teoe 0n
1 : 3- mo* ning - Ano “ ;
o T i H r T ==
: | Tl |
> q’:\v""“" Wi "}"|“ f"J( “"“"'-'\T"‘Ypﬁ‘lﬂr J AV ALY W V‘«‘.‘i‘a | JJ ourd A A e N.

0
Jan 04 Jan 9 Jan 1% 2 Jon 29
Tene aun

Figure 17. Identified anomalies based on the simulated datasets for transformer 3
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The voltage anomalies indicate potential supply instability, which may be caused
by excessive loading, fluctuations in distribution voltage, or network faults.
Persistent voltage sags can lead to inefficient transformer performance and
increased heating, which accelerates insulation degradation. The presence of 53
voltage-related anomalies suggests that further analysis is needed to assess the
root causes of these fluctuations and their impact on long-term transformer

reliability.

The winding temperature anomalies were the most frequent issue, with 87
recorded instances per transformer where temperatures exceeded the critical
threshold of 90°C. Elevated thermal conditions accelerate the aging process of
insulation materials, reducing the remaining useful life of the transformer.
Persistent overheating can be attributed to high load conditions, insufficient
cooling mechanisms, or external environmental factors such as elevated ambient
temperatures. If left unaddressed, such conditions can lead to insulation

breakdown and potential transformer failure.

THD anomalies were detected 44 times per transformer, signaling power quality
concerns within the system. Excessive harmonic distortion negatively impacts
transformer efficiency, contributing to additional heating and potential resonance
issues. These anomalies suggest the presence of non-linear loads, such as industrial
machinery or power electronic converters, that inject harmonics into the system.
Elevated THD levels beyond 7% indicate the need for further investigation into load
characteristics and potential mitigation strategies such as harmonic filters or

improved network balancing.

The next step involves refining the prioritization of the detected anomalies (in this
case the total of 184 detected anomalies) to focus on the most critical faults
requiring intervention. The maintenance optimization phase classifies and
schedules necessary corrective measures based on severity, ensuring that the most
at-risk transformers receive timely attention to prevent failures and minimize

operational disruptions.

The maintenance optimization process has been successfully completed for both
Transformer 2 and Transformer 3. The optimization phase utilizes the detected
anomalies, transformer health indicators, and feature correlations to prioritize and

schedule maintenance tasks over a defined scheduling horizon. Figure 18 and
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Figure 19 depict the heat maps illustrating the correlation between key transformer

parameters, including voltage, winding temperature, THD, and load profile.
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Figure 18. Correlation heat map for key transformer 2 parameters
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Figure 19. Correlation heat map for key transformer 3 parameters

The color scale in Figure 18 and Figure 19 ranges from -1to 1, where values close to
lTindicate a strong positive correlation (i.e., when one parameter increases, the other
also tends to increase), values near -1 represent strong negative correlations (i.e.,
when one parameter increases, the other tends to decrease), and values around O
suggest weak or no correlation. These insights help in understanding which

parameters contribute most to transformer degradation and guide maintenance
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prioritization based on critical feature interactions. The weak correlations also
indicate that maintenance planning should rely on a combination of multiple

condition indicators rather than a single dominant factor.

For Transformer 2, the heat map shows generally weak correlations among the
features. The highest correlation observed is between voltage and winding
temperature (0.0909), which suggests that voltage fluctuations have a slight
impact on transformer heating. Similarly, THD and load profile exhibit a small
correlation (0.0982), indicating that harmonic distortions may slightly increase with
higher load levels. However, the overall low correlation values indicate that these
features do not exhibit strong dependencies, suggesting that multiple

independent factors influence transformer health and operational conditions.

The final output of this step is the proposed maintenance schedule for the
transformers under study. Figure 20 presents the smart maintenance optimization
schedule for Transformer 2, while Figure 21 illustrates the corresponding schedule

for Transformer 3.
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Figure 20. Smart Maintenance optimization schedule for transformer 2
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Maintenance Optimization Results - Transformer 3
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Figure 21. Smart Maintenance optimization schedule for transformer 3

For Transformer 2, the predictive maintenance tool identified and scheduled
Mmaintenance tasks within a 30-day optimization horizon. Tasks were prioritized
based on asset-health evaluation combining transformer Health Index (HI),
operational criticality, and correlation-weighted condition indicators (Voltage,
Winding Temperature, THD, and Load Profile). A total of tasks was scheduled,
predominantly classified as "Cooling System Maintenance," due to frequent
winding temperature elevations beyond 95°C, indicating potential overheating

risks.

Similarly, for Transformer 3, the predictive tool recommended an equivalent
number of maintenance tasks. These tasks also predominantly classified as
"Cooling System Maintenance" were systematically prioritized and scheduled
according to their HI scores, with transformers exhibiting lower HI values (below
0.5) receiving higher urgency. The resulting schedule maintained a balanced
distribution across the scheduling horizon, efficiently addressing transformers

showing significant thermal stress indicators.

The validation visualizations highlight the effectiveness of integrating predictive
health modeling (HI-based), feature weighting through correlation, and adherence

to operational constraints. This combined approach ensures that the assets
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identified as most vulnerable to potential failures are proactively managed, thus

enhancing system reliability and reducing unplanned outage risks.

The correlation analysis preceding the optimization revealed relatively weak direct
correlations among the individual transformer operational parameters. Despite
these low correlations, the current approach leveraging a Hl-based predictive
model combined with operational criticality effectively compensates for the limited
linear correlation among individual parameters. The optimization algorithm
successfully prioritizes maintenance tasks by incorporating nonlinear relationships
captured by the predictive model, operational importance (criticality), and specific
fault-type indicators (e.g., elevated winding temperature, THD). Consequently, even
though direct correlation values among raw parameters might be limited, the
integrated predictive modeling framework ensures accurate identification and
proactive scheduling of critical maintenance tasks, aligning effectively with

operational constraints and transformer health conditions.

2.2.2.4 Next Steps

The next steps should focus on implementation, validation, and integration of the
Smart Grid Maintenance tool within the project’s associated services and relevant

pilot sites. The proposed action plan by the end of the task (i.e., M33) is the following:

= Finalization of the Computational Framework based on available mandatory
grid asset’'s data and feedback from grid-level actors (especially DSOs/TSOs
partners). Optimization models will be enhanced/modified to include grid

constraints and operational flexibility.

= Streamline a structured data exchange via the EVELIXIA Services Broker that
enables seamless data extraction from IS15-iVN, in parallel with the grid modelling
progress, to incorporate continuous asset health monitoring and predictive

simulations.

= Validation on Pilot Case Studies — The tool will be tested in the relevant project’s
pilot sites to validate its predictive accuracy and maintenance optimization

strategies, provided that real mandatory data is available.

EVELIXIA — D4.3 EVELIXIA Autonomous District Digital Twins 44



VELIXIA

Funded by
the European Union

3 EVELIXIA'S AUTONOMOUS DISTRICT DECISION
SUPPORT FRAMEWORK

The primary goal of network planning is to identify the most cost-effective
investment strategy that meets the power transfer needs between energy sources
and loads. Integrating renewable energy generation (REG), such as wind farms and
solar power plants, into the grid often necessitates network investments while also
accounting for environmental costs. Unlike conventional power plants, the
operational characteristics of REG are highly variable and location-dependent,
requiring adjustments or improvements to traditional network expansion

methods.

Distribution network planning involves determining the optimal location and size
of substations and feeders. Integrating distributed generation (DG), such as solar
and wind, into the distribution network can reduce active power losses and delay
the need for new infrastructure investments. However, increased penetration of
REG can lead to challenges like line overloading and voltage regulation issues.
Traditionally, these issues have been addressed by building new circuits to expand
network capacity, but this approach is often time-intensive, costly, and may not
always be feasible due to space or regulatory constraints. As wind and solar power
depend heavily on geographic conditions, certain parts of the grid may experience

congestion and require upgrades to accommodate more REG connections.

Modern approaches, such as active network management and advanced
communication systems, can complement or replace traditional reinforcement

strategies, offering solutions that are more flexible and cost-effective.

As REG connections continue to increase, certain areas of a distribution network
may experience issues such as nodal (bus) voltage violations and line overloading.
However, constructing new circuits to accommodate REG can entail significant

financial and environmental cost.

Active network management schemes (such as enabling grid users’ flexibility)
constitute technical levers available to system operators as an alternative to grid
reinforcement, to deal with the changing congestion issues and voltage challenges

faced by the local grid due to the mass arrival of decentralized generation facilities.
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Distribution automation can be treated as a supplementary scheme to traditional
primary asset investments; network investments can be reduced or deferred by
deploying active network management. If flexibility resources are available within
the network operation, the identified capacity needs can be resolved or

significantly reduced through the utilization of such flexible resources.

In light of this, the core objective of this task is to deliver tools that enable the
identification of the minimum network investment scheme for the system
operator satisfying the power transfer requirements from sources to loads, while
also enabling the elimination of branches overloading by deploying active network

Mmanagement schemes.

Towards this objective, the simulation capabilities of the iVN under tasks T4.3 (see
Section 2.2.1) will be leveraged to create a set of decision-making and support
services at the district/grid level, including Grid Investment Planning services (IS11),
Multi-vector Network Management services (IS12) and Aggregated Demand
Portfolio Management services (IS13), as depicted in Figure 22. These services focus
on grid stakeholders (grid operators —at the DSO level, also involving synergies with
energy aggregators, retailers, etc.), providing services from the Grid to the Building

(i.e., energy consumers) that could mutually benefit both sides.

District Digital e Aulvnomies —_— services/optimization
Dy igitnl frameworks focus on grid

The Dictrict Dioital Twin (i ati Twin & Support
The District Dl&ll.lvl Twin l_hlllll{l‘lll(KI bR stakeholders (grid operators - at
model 91 the dlb(.l ict level) is \ J/ the DSO level, energy
extended for assessing necessity &

. . S aggregators, retailers, etc.)
economic benefits of district-level

investments via integrating

optimization frameworks

Figure 22. Linkage of T4.3 and T4.4 towards EVELIXIA Autonomous District Digital
Twin & Support Framework

In Section 3, the key developments of Task 4.4 activities (Figure 23) are described,
along with some preliminary results to showcase the functionalities of the tools

(described in detail in Section 3.2).
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Figure 23. Methodology of T4.4 EVELIXIA services implementation. Inputs/Outputs are
referred to T4.4

3.1 Introduction

Multivector energy systems refer to integrated energy systems that utilize various
energy carriers—such as electricity, heat, hydrogen, and biofuels—interconnected
within a single framework. These systems aim to optimize energy production,
storage, and consumption by efficiently coordinating different forms of energy to
enhance overall performance, reliability, and sustainability. Simulation and
optimization of multivector energy systems requires sophisticated techno-
economic tools that are capable of modelling buildings and distributed energy
resources (DERs) across multivector energy networks. Towards this, the IS15 - iVN
multi-vector grids energy modelling capabilities (see Section 2.2.1) will be leveraged
for the enhancement of the Innovative Solutions developed under Task 4.4
activities, thus enabling automated decision-making for holistic system planning,
operation, and maintenance across buildings and grid levels. Given that at this
phase of the project the multi-vector grids modelling in Task 4.3 is under
development, the focus of the ISs under Task 4.4 (Section 3) is shifted towards the
flexibility of the electricity distribution grid (mainly focusing on local congestion
management via distribution grid related services) without compromising the
increasing interdependence among the different energy vectors at the distribution

level (i.e., electricity, district heating, and natural gas systems). Thus, the proposed
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framework (Figure 23) enables the synergy of the different system operators, which

is not the case in the current state of the deregulated energy commodities market*.

3.2 Autonomous District Digital Twin - Solution Design
Overview

Task 4.4 aims to create develop and implement three discrete yet cooperative
Innovative Solutions (ISs):

=  Crid Investment Planning Assistant Service (IS11): Supporting long-term system

planning for local grid operators’ (e.g., DSOs) based on proactive identification of
future bottlenecks, assessing the necessity of potential interventions and
evaluating in terms of economic benefit (direct investment profits from network
enhancements) and economic viability. Performs a Cost-Benefit Analysis (CBA) to
compare different grid investment scenarios.

= Multi-Vector Energy Network Manager Service (IS12): Targeting grid operators

(e.g., DSOs), enables services at the grid level (focusing on local congestion
management via flexibility-based solutions), without violating operational bounds
of the different energy networks.

» Aggregated Demand Portfolio Manager Service (IS13): Targeting Aggregators

applies real-time daily portfolio replanning/rescheduling at an aggregated building
and district scale, to enable proactive resources (demand flexibility) aggregation
and allow active participation in energy balancing markets (focusing on the

electricity vector).

These ISs are presented in detail in the following subsections.

3.2.1 Grid Investment Planning Assistant (IS11)

The Grid Investment Planning Assistant (GIPA) is a decision-support tool designed
to evaluate current and future network bottlenecks and assess the economic
viability of potential grid infrastructure upgrades. It provides a structured and

guantitative approach for investment planning at the grid level, incorporating a

4“The heating market is far less competitive and mature than the power and natural gas
market, and the market clear cycles of electricity and natural gas markets are different.

EVELIXIA — D4.3 EVELIXIA Autonomous District Digital Twins 48



VELIXIA

Funded by
the European Union

detailed CBA based on the ENTSO-E CBA guidelines to compare different
strategies such as network reinforcement, active network management, and DER

integration.

The tool supports DSOs and policymakers in making informed, cost-effective, and
sustainable investment decisions, by considering technical constraints, other
constraints (such as geographic limitations, regulatory requirements), and socio-
economic factors. It enables comprehensive economic feasibility evaluations of
different grid reinforcement strategies, including traditional upgrades (e.g., new
line installations, substation expansion, transformer replacement) and smart grid
solutions (e.g., SCADA upgrades, demand response mechanisms, grid-scale energy

storage).

GIPA extracts the necessary input data from the Multi-Vector Grids Energy
Modelling & Simulation solution (IS15), vector congestion forecasting, and capacity
building analysis from RES and storage integration, i.e., assessment of the energy
system’s ability to accommodate and optimize the integration of RES and storage

technologies over time.

The tool incorporates technical, economic, and environmental dimensions to
assess the long-term projected district-level scenarios, to ensure that multi-grid
modernization strategies meet the challenges of increasing electricity demand,
renewable penetration, and grid reliability while maximizing economic benefits

and ensuring efficient allocation of resources via various grid upgrade scenarios.

3.2.1.1 Objectives

IS11 - Technical Objective "TRL5 to TRL7": Originally validated in the relevant
environment of several past EU-funded projects (e.g. IANOS GA No. 957810) GIPA
is introduced to EVELIXIA at Technology Readiness Level (TRL) 5. Advancing
towards TRL6, a working version of IS11 is tested in a simplified, small-scale network
based on the IEEE 33 bus radial distribution system, as it is further described in
Section 3.2.1.3. The final version of the GIPA will undergo validation using simulation
data generated by IS15 - intelligent Virtual Network — iVN (Section 2.2.1), ensuring
applicability to each pilot site network under study. As part of EVELIXIA's platform
integration, progressing towards TRL 7 until the end of the project, future efforts

and refinements of the tool target demonstration of the technology across
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EVELIXIA pilot sites, thus ensuring its applicability in real-world grid investment

planning and decision-making.

IST1 - Scientific Objective: Economic valuation & monetization of grid investment
scenarios. GIPA enables the quantification and monetization of investment
benefits across EVELIXIA's pilot sites, providing economic assessment indicators
(i.e.,, Net Present Value (NPV) and Benefit-Cost Ratio (BCR)). GIPA employs a multi-
layered methodology that identifies grid-level investments that maximize

economic, environmental, and by extension, social value (Section 3.2.1.2).

3.2.1.2 Methodology

GIPA follows a structured methodology for evaluating grid investment scenarios by
integrating CBA principles based on the ENTSO-E CBA guidelines [10], [11]. The
process ensures a comprehensive evaluation of grid upgrade options, monetization
of benefits, and cost assessments to determine the most viable investment
pathway.

Tailoring the workflow to the needs of EVELIXIA (Figure 24) the methodological
approach breaks down into two core features, the Scenario Analysis and the CBA.
The evaluation of existing/future bottlenecks derives as the output of the
simulation engine (i.e., EVELIXIA district DT) and contributes to assessing the
necessity for infrastructure interventions/investments (network-specific KPIs that
will serve the benefit monetizing phase of the CBA), providing the required inputs
from the end-user (i.e, the targeted users, e.g., the grid under study operations), via
the EVELIXIA platform. The methodology further employs:

e Multi-Criteria Investment Assessment, in the sense that upgrade
investments are evaluated based on multiple KPls, reflecting technical
performance and environmental indicators towards socio-economic welfare
Thus, the tool provides a structured decision-making process for network
expansion and optimization.

e DER Grid Integration, assessing the economic feasibility of integrating
variable RES and storage as cost-effective solutions to mitigate challenges
such as congestion, curtailment, and voltage violations.

e Scenario-Based GCrid Planning, enabling the comparison of different

investment strategies by simulating multiple grid upgrade scenarios.
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e Environmental and Social Impact Considerations, incorporating carbon
footprint reduction, grid resilience improvements, and social benefits (e.g.,
improved service reliability), which aligns with EU regulatory frameworks
and climate goals for sustainable energy infrastructure.

e Uncertainty Planning, via parametric analysis to assess investment risks
under varying future conditions, such as changing energy prices, policy shifts
and regulatory changes, demand growth and peak load variations,

renewable energy penetration levels).

. . .
Scenario Analysis Cost-Benefit Analysis
Grid Upgrade Lond Flow Quantify Monetize Compare
Options Analysis Costs Benelits BCR
# Sclect Interventions EVELIXIA District » Capital Expenditures # Identify and > Net Present Valae (NPV)
#  Objectives and scope of the Digital Twin: (CAPEX) monetize #  Benefit-Cost Ratio (BCR)
planned interventions 7 Simulate bascline network » Operational Expenditures  benefits
# Functionality of cach scenario performance (OPEX)
#  Model each scenario » Environmental Costs

7 Load flow with
Interventions

# Evaluate the performance
ol upgrades (KP1s)

Impact of varintions in Key parsmeters (e, economic, technieal, market/policy )

Figure 24. Grid Investment Planning Assistant (GIPA) workflow

Scenario Analysis

The grid upgrade options (Figure 24) are defined based on projected estimates of
system needs, identifying necessary interventions to support renewable energy
integration, congestion management, and grid flexibility enhancement. Various
upgrade options relevant for the EVELIXIA scope and objectives are to be
considered, aligned with system operators’ best practices, including but may not
limited to advanced SCADA and control system upgrades, new substations and
grid reinforcements, grid-scale BESS, and reconductoring or capacity expansion of
existing lines. Each upgrade scenario is assessed based on its technical and
operational role, evaluating how interventions contribute to improving grid
flexibility, stability, and resilience. This assessment involves mapping elements and
assets to specific functionalities, (e.g., congestion mitigation), while also translating
these functionalities into quantifiable benefits. These benefits are categorized into

economic aspects, including cost savings and deferred investments in grid
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reinforcement, environmental improvements, such as CO, emissions reduction
and better renewable energy utilization, and operational enhancements, including

voltage stability, reduced congestion, and improved system reliability.

The load flow analysis (Figure 24) serves as a critical step in evaluating the baseline
network conditions and the impact of proposed grid upgrades. In the EVELIXIA
framework, this analysis is conducted through the District Digital Twin,
implemented within IS15-iVN, which enables a detailed assessment of grid
performance under current and projected conditions. The baseline simulation
provides insights into existing grid constraints, voltage deviations, and risks of
network overloading, particularly under anticipated demand growth and

increasing renewable energy penetration.

Following this, the selected upgrade scenarios (relevant for each application case
within the EVELIXIA, according to the involved stakeholders’ feedback) are
integrated into the simulation model to analyse their effectiveness in addressing
the observed bottlenecks. By running power flow simulations under different
intervention strategies, the model quantifies the improvements in grid stability,

congestion relief, and renewable hosting capacity.

To systematically evaluate the benefits of each upgrade scenario, a set of Key
Performance Indicators (KPIs) is defined, measuring key aspects of grid operation.
These indicators provide a quantitative basis for comparing different grid upgrade
strategies. Table 1 summarizes a provisional KPlIs list related to grid operation and
performance and their respective calculation formulas [12], [13]. This KPI list will be
updated upon integration of the EVELIXIA platform and refined according to the
site-specific needs of respective grid-level actors. The final KPIs will be based on
calculations performed in the simulation engine, based on the grid-level

stakeholders input data and feedback.
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KPI Description Formula Unit
Reduction in AC:Ecurt,bose_Ecur,/'nvesrment
curtailed energy
Energy . .
) due to grid Ecurcpase = Total curtailed energy under the
Curtailment | _ ] MWh/year
_ investment or baseline scenario (MWh/year).

Reduction o ] _
flexibility Ecurtinvestmen: = TOtal curtailed energy after grid
solutions. investment (MWh/year).

. . A E:E/oss,base_ E/oss,in vestment
Reduction in
transmission and
Energy Loss o . Elossbase = TOtal annual energy losses under
. distribution . . MWh/year
Reduction ) the baseline scenario (MWh/year).
losses due to grid
) Elossinvestment = TOtal annual energy losses after
reinforcement. o
grid investment (MWh/year).
LF = Average Load 100%
" Peak Load x ’
LF :load factor (%).
Average Load: mean power demand over a
Improvement in given period (MW).
the ratio of Peak Load: maximum power demand
System Load ] ]
average to peak observed in that period (MW).
Factor o %
load, indicating
Improvement
i LF; _LF,
better gl’ld LF Improvment — mves;r;ent base x 100%
utilization. base
L Finvestment . LOad Factor after grid upgrade or
flexibility intervention.
L Frase: LOoad Factor under the baseline
scenario.
Reduction in
emissions due to Frossit
€0, Avoided = Z[E X (Lo e BF o
CO- Emissions increased ? RESHUSCATR By ot ar tons
Avoided renewable COs/year
integration and Eresuseq: additional renewable energy utilized
reduced fossil- due to the intervention (MWh).
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based Frossi: amount of fossil fuel-based electricity
generation. generation (in MWh).
Frotar: total electricity generated in the grid (in
MWh).
EFgrig: average CO, emission factor of the grid

(in tons CO2/MWh).

Reduction in

. H — |H;
congestion levels Hyase| = Hinvestment| x 100%
|Hbase|
_ on network
Grid
assets (e.g.
Congestion g, Hpase: hours per year when network elements
transformers ) .
Relief ' exceed a predefined congestion threshold %
lines) after . . . )
(Percentage ) (e.g., 80%-line loading) before intervention.
implementing a
Reduction) P 9 Hinvestment: hOUrs per year when network
flexibility or
Y elements exceed the threshold after
reinforcement . .
intervention.
measure.
S 4 — |V
Reduction in | basel | mvestmentl % 100%
IVbaseI
voltage
Voltage o
deviations from ) . .
Stability Vhase: MNaximum voltage deviation before %
nominal levels at . .
Improvement intervention (pu).

key network . I
4 Vinvestment: Maximum voltage deviation after

nodes. . .
intervention (pu).

Cost-Benefit Analysis

The objective of the CBA process is to quantify the costs and benefits associated
with a proposed intervention in measurable terms, ensuring that investment
decisions are financially sound. The analysis includes both direct financial impacts
and monetized values of non-monetary benefits such as environmental

improvements and system reliability.

The first step involves defining the cost components. Once the baseline and
intervention cases are established, the cost quantification incorporates Capital
Expenditure (CAPEX)—covering infrastructure deployment, grid expansion, RES

and storage investments—as well as Operational Expenditure (OPEX) for
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maintenance and monitoring. Additionally, Environmental Costs related to

emissions or sustainability concerns are factored in.

The expected benefits are monetized to reflect their economic value. This includes
for example converting deferred transformer or substation expansion into avoided
network upgrade costs, lower energy losses into reduced operational expenditure,
congestion management into avoided curtailment costs, etc. Similarly, enhanced
system reliability is translated into avoided downtime costs, while reduced CO;
emissions and improved energy efficiency are monetized using standardized
carbon pricing metrics (such as€/ton of CO, avoided), derived from carbon taxation
schemes or emissions trading systems (ETS). At this stage, the analysis also
identifies the key beneficiaries, which may include TSOs, DSOs, consumers,

policymakers, and renewable energy investors.

The financial viability of the investment is then determined through standard
economic performance metrics. The Net Present Value (NPV) is computed by
summing the discounted monetary benefits and subtracting the discounted costs
over the project’s lifetime, with a positive NPV indicating a financially attractive
investment. The Benefit-Cost Ratio (BCR) is calculated by dividing the total present
value of benefits by the total present value of costs, with a BCR greater than one

signifying a viable and justifiable investment [11].

To account for uncertainties and risks, GIPA incorporates will evaluate the impact
of the variation in key parameters from the scenario analysis for grid upgrades
stage (Figure 24) that serves as input to the CBA, assessing the robustness of
investment decisions under varying conditions, including but not limited to the
impact of demand growth variations (which affect electricity consumption and grid
constraints), market price fluctuations (which influence investment profitability),
and renewable energy penetration (which alters the need for flexibility solutions).
Furthermore, regulatory and policy changes—such as new incentive mechanismes,
evolving market rules, or adjustments in CO, pricing—should be also considered to

enhance decision-making resilience and adaptability to future grid conditions.
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CBA Formulation — Parameters and Definitions

The static/dynamic input data in the formulation that follows are provided

requested by the interested users of GIPA and extracted from IS15-iVN.

Net Present Value (NPV): The NPV is the monetary amount of the change in the

value of the energy infrastructure due to selecting and applying one or more
interventions according to the business objectives set by the involved stakeholders.
A positive NPV suggests a profitable investment. The NPV is calculated by

summing the present values of all benefits and subtracting the present values of

all costs:

(Bt— Cop,t=Cenv,t)
NPV = {:1 ((ﬁ_r)tenv - Cenv,embodied - Cenv,EoL — Ciny Eq. 3211
where:

B Benefits in year t, resulting from energy savings, reliability improvements,

demand response optimization, and other grid-related enhancements:

Bt = Benergy,t + Breliability,t + BDR,t + Bcurtailment,t + Bother,t Eq 3212

where Benergy,t Can be expresses as the sum of

Grid Losses Avoidedy xElectricity Price.°and any Generated Revenue:, Breiabiity,
can be calculated as the sum of SAIDFP Reduction:xVoLL"® and SAIFI" Reduction; x
Outage Cost per Event?, Bpgr: (Where relevant for involved stakeholders in the
study) can be calculated via the sum of Peak Demand Reduction:

¥ xCapacity Market Price'* and DSO/ TSO Flexibility Payment:”, Beuraiimens: term

5 Grid Losses Avoided account for reduction in MWh of energy losses due to grid efficiency
improvements.

6 Electricity Price is the cost of energy per MWh (e.g., wholesale market price).

7 This term is applicable in cases of generated revenue streams, e.g., any revenue from
charging/discharging storage via arbitrage mechanism at different price periods.

8 This term refers to the case that grid investments directly reduce outage frequency;
alternatively, this applies only to flexibility solutions.

9 SAIDI is the System Average Interruption Duration Index (in hours).

O VolLL is the Value of Lost Load, i.e, the economic loss per MWh of unserved energy
(€/MWHh).

T SAIFl is the System Average Interruption Frequency Index.

2 Economic impact per outage event (€).

¥ Reduction in MW of peak demand.

“ Payment per MW of capacity reduction.

> Compensation from DSO/TSO for DR services.
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coresponds to Avoided Curtailment:xMarket Price of RES: and finally Botner: refers
to Other Market Revenues (e.g., CO, credits — i.e,, revenue from carbon trading,
ancillary services revenue — payment from TSOs for grid support, voltage regulation

benefit — economic savings from better voltage stability, and other).

In Eq. 3.2.1.2, it should be noted that the benefits can vary by scenario (e.g., BESS
might contribute more to arbitrage, while a new transformer mainly reduces
curtailment and reliability costs, etc.). Also, some benefits (e.g., avoided curtailment)
may increase over time with RES penetration, while B; (when used in NPV) is
discounted over time. Finally, the Eq. 3.2.1.2 formula is expressed in its most general
form, making it universally applicable to all relevant scenarios; this depends on the
specific interventions, their impact and the beneficiaries (stakeholders) —e.g., third-
party BESS aggregators might receive ancillary payments, but DSOs might not).
Thus, for practical studies, each benefit source is matched to the stakeholder who

receives it. However, they are included in this part for the completion of the analysis.

Copt: Operational Expenditure (OPEX) in year t, including expenses incurred to
maintain the investment over time. Represents yearly operational and
maintenance costs (e.g., BESS degradation, transformer maintenance, SCADA

system upkeep, and grid monitoring).

Cenve: ENnvironmental costs in a year t due to operational emissions and energy

losses.
Cenve = CO, cost x CO, emissions, + Energy-Losses, x Energy Cost Eq.3.21.3
where

e CO: cost: the static price of CO, emissions per ton (€/ton), as set by carbon

markets (EU ETS) or regulatory frameworks
e CO;emissions:. the annual operational carbon emissions in year t (toneg)

e Energy Losses: the energy losses associated with increased transmission

and distribution losses (MWh) due to inefficient power flows

e FEnergy Cost: the static market price of imported or exported electricity

depending on the scenario (€/MWh)

Cenvembodiead: ENVironmental costs due to embodied energy and emissions
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Cenv.embodgiea = CO, embodied x CO, cost + PED embodied x Energy Cost
Eq. 3214

e CO, embodied: the emissions embodied in component j (toneq) associated
with the manufacturing, transportation and installation of the component

(Stage A of its lifetime)

e PED embodied: the embodied energy (MWh) during the production,

transportation, and installation of components (Stage A of its lifecycle)
Cenveor: Environmental costs due to End-of-Life energy and emissions

Cenvgor, = €0y, X CO5 cost + PEDg,, x Energy Cost Eq.3.215

e COse: the emissions generated during the disposal treatment, and final

fate of a product at the end of its useful life

e PEDg,: the primary energy (MWh) required for the disposal, treatment, and

final fate of a product at the end of its useful life.

In case of lack of input data for the calculation of the Ceny empodiea (EQ- 3.2.1.4) and the
Cenv,eor (EQ. 3.21.5) of district-level energy carriers (generators, storage, power plants,
charging stations, transformers) (e.g., aggregators, operators, manufacturers) key
static information will be sourced from the Lifecycle Inventory (LCl) provided by

CERTH/CPERI.

Cinv Initial investment costs, i.e. CApital Expenditure (CAPEX), including
infrastructure upgrades (e.g., BESS deployment, reconductoring, SCADA, new
substations, etc.). Investment costs include all the upfront expenditure required to

implement the grid intervention:
Ciny = Iivzl(Cequip,i + Cinstall,i) Eq.3.2.16

where Cequipi IS the equipment cost for asset i (e.g., BESS, transformer, etc.), Cinstaui IS
the installation and commissioning cost of asset /, and N is the total number of grid

assets in the investment.

r: Discount rate applied to future costs and benefits. The discount rate reflects the
time value of money and investment risk, typically based on the project's cost of

capital, risk profile, inflation, market conditions, and industry standards. In energy
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projects, regulated entities use lower rates (3%-7%) for societal benefits [14], while

private investors apply higher rates (8%-12%) to meet return expectations [15].

t: The project’s time horizon, typically in the range of a 10-, 20- or 30-years horizon.
It is important to note that the duration in years is defined by the interested

stakeholder/site operator/aggregator etc. for each set of scenarios.

Benefit-Cost Ratio (BCR): The BCR is the ratio of the present value of benefits to the

present value of costs. A BCR greater than 1 indicates an economically viable
investment (as already mentioned), meaning the benefits outweigh the costs. BCR
is computed by dividing the total present value of benefits by the total present

value of costs:

St

_ “ta+nt

BCR = S Fq.3217
T op,tTlenv,t

Cinv +Cenv,embodied+cenv,EoL+ Zt:l—

(1+r)t
where the numerator accounts for the present value of all benefits over the project

lifetime, while the denominator is the sum of the initial investment, the present

value of operational and associated environmental costs over the project lifetime.

3.2.1.3 Evaluation & Results

Given that at the current stage of the project the grid modeling is under
development, a preliminary test-run is set up in an alternative software
environment to validate the tool's functionality and performance. Specifically, the
GIPA methodology is initially tested in a modified, small-scale |[EEE 33-bus test
system [16] developed in MATLAB R20244a, reduced to a 5-bus network (test system)
that represents a simplified distribution network operated at the DSO level, to
evaluate investment decisions in grid reinforcement and congestion management.
This test-run serves as a validation of the methodology, which aims to assess the
cost-effectiveness of network upgrades while considering KPIs such as voltage
stability, transformer loading, and grid losses. In addition, due to lack of a real-world
case study at this phase, the applicability of the tool has been tested via simplified
formulas, based on the methodology of Section 3.2.1.2. The power flow model was
developed in MATPOWER v8.0 [17] ensuring accurate AC power flow calculations.
Overall, this test-run is a means of verifying that the CBA methodology is
successfully integrated with the Scenario Analysis and the power flow stages of the

proposed workflow in Figure 24.
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In this case study, a new grid line addition is evaluated against a Business-as-Usual
(BaU) case, quantifying NPV and BCR under different discount rates and demand
growth assumptions. The test system consists of five representative buses based
on key grid characteristics: Bus 1 being the slack bus (primary substation), Load Bus
2 (e.g., medium-sized load center - 5 MW), Load Bus 3 (e.g., industrial or commmercial
load center - 8 MW), Load Bus 4 (e.g., residential or mixed-use load center — 3 MW)
and Generation Bus 5: Renewable energy injection (e.g., distributed solar or wind,
-10 MW exports). Annex 1 (Section 6.1) includes the MATPOWER implementation of
the modified IEEE 33-bus test system, adapted for the analysis.

The BaU case refers to the state of the grid under study when no new infrastructure
investment is made, and the existing network continues to operate under its
current conditions. Under this case, the grid experiences significant operational
inefficiencies, including high transformer loading, increased voltage deviations,
and considerable grid losses. These inefficiencies contribute to increased
operational and environmental costs, primarily due to excessive energy losses and

the associated carbon footprint.

The investment scenario under study, referred to as the New Line Addition, involves
a targeted grid reinforcement measure in which a new transmission line is installed
between Bus 3 and Bus 5. This intervention is expected to reduce congestion,
enhance voltage stability, and lower transformer loading, thereby improving overall

grid reliability.
Technical Performance Evaluation

To evaluate the effectiveness of this investment, after running the power flow
simulations for both scenarios, the quantitative results are mapped into specific
KPls (based on Table 1). The new line addition resulted in a 40% reduction in voltage
deviation, decreasing from 0.05 per unit (pu) in the BaU scenario to 0.03 pu, while
the reinforcement led to a 23% decrease in transformer loading, lowering it from
98% to 75%, thus alleviating stress on network assets and improving the longevity
of infrastructure components. Grid losses, a major source of inefficiency, were also
significantly reduced. In the BaU case, annual grid losses amounted to 3.5 MWh,
whereas the introduction of the new line reduced them to 1.8 MWh, marking an

improvement of approximately 48.5%. These technical benefits are translated into
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economic savings, primarily through reduced operational and environmental costs.

These results are depicted in Figure 25.

Scenario Comparison - Technical, Economic, and Environmental KPis
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Figure 25. Power flow results for the 5-bus system under study: Technical and
economical-environmental metrics

The evaluation of these scenarios for the test-run is based on real-world economic
and environmental assumptions. The cost of implementing this reinforcement is
estimated at €5 million, covering CAPEX related to equipment, installation, and
commissioning. Additionally, OPEX for maintenance is assumed to be €300,000
per year, reflecting the costs associated with routine inspections and upkeep of the
newly installed infrastructure [18]. Furthermore, the cost of energy losses was
assumed to be €100 per MWHh, a value derived from historical electricity market
prices within the European Power Exchange (EPEX Spot) [19]. Additionally, CO-
emissions were estimated using an average grid emission factor of 0.3 tons CO; per
MWh [20] reflecting the energy mix of the European electricity sector. The carbon
pricing used for monetizing environmental costs was €90 per ton of CO,, based on

the prevailing rates within the European Emissions Trading System (EU ETS) [21].

To assess the financial feasibility of the investment, a range of discount rates was
considered, representing different potential financing conditions. Three values
were selected for parametric analysis: 8%, 10%, and 12%, corresponding to low-risk,
standard, and high-risk investment environments, respectively. Moreover,

variations in demand growth were incorporated into the analysis, with annual
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growth rates of 0.5%, 1.5%, and 3%, reflecting different scenarios of energy

consumption evolution and grid utilization.
Financial Analysis

The financial evaluation of the investment was conducted using NPV and BCR
calculations based on Eq. 3.2.1.1 and Eq. 3.2.1.7 respectively, for a time horizon of 20

years [11]. The results are presented in Figure 26.

Sensifivity Analysis: Impact of Discount Rate and Demand Growth on NPV & BCR
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Figure 26. Financial Analysis for the 5-bus system test-case: Impact of Discount Rate
and Demand Growth on NPV and BCR calculations

For the New Line Addition scenario, the NPV was calculated at €2.17 million for a
discount rate of 10%, indicating that the investment yields a positive economic
return over its lifetime. A parametric analysis was performed to assess the impact
of varying discount rates (8%, 10%, 12%) and demand growth projections (0,5%, 1.5%,
3%). The results showed that under a higher demand growth of 3% per year, the
NPV could reach €312 million, suggesting greater economic benefits under
scenarios of increasing electricity consumption. Conversely, under a higher
discount rate of 12%, the NPV decreased to €1.55 million, highlighting the negative

effect of higher financing costs on investment feasibility.

For the New Line Addition, the BCR was 1.3 million for a discount rate of 10%,
indicating that the benefits outweigh the costs, making the investment

economically justifiable. The parametric analysis revealed that under a higher
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demand growth scenario, the BCR increased to 1.39, while for a higher discount rate
scenario, the BCR declined to 1.23. These findings suggest that investments in grid
reinforcement become increasingly attractive in environments with growing

electricity demand and stable financing conditions.

This initial test-run under a mock-up scenario validates the applicability of the GIPA
methodology in assessing the impact of grid investments, given the provided
inputs (Figure 24). Future applications of this methodology will be extended to real-
world distribution networks and potential investment scenarios within the scope
of the project, ensuring that grid planning aligns with the evolving energy

landscape and regulatory frameworks across site via the EVELIXIA platform.

3.2.1.4 Next Steps

The next steps should focus on implementation, validation, and integration of GIPA
within the project’s associated services and relevant pilot sites. The proposed action

plan by the end of the task (i.e.,, M33) is the following:

= Finalize the GIPA computational framework and refine the KPI list (Table 1),

based on feedback from DSOs/TSOs partners.

=  Streamline a structured data exchange via the EVELIXIA Services Broker that
enables seamless data extraction from IS15-iVN, in parallel with the grid modelling

progress and power flow simulations.

= |teratively engage with grid-level actors, including system operators and

aggregators, to co-define scenario development and parameter definition.

3.2.2 Multi-vector Network Manager (1S12)
Background & Motivation

The primary motivation for network users to provide flexibility to the grid through
Demand Response (DR) mechanisms lies in the financial incentives offered by
network operators. These incentives typically take the form of cost reductions or
reimbursements for adjusting energy consumption or production in response to
grid needs. DR mechanisms can be categorized into two main approaches [22], [23],
[24]:

EVELIXIA — D4.3 EVELIXIA Autonomous District Digital Twins 63



VELIXIA

Funded by
the European Union

= Explicit Demand Response — In this approach, the DSO offers direct financial
incentives to consumers (e.g., bill reductions) and establishes contracts that require
them to adjust their energy consumption or generation according to the DSO's
signals. This enables direct congestion management by ensuring that consumers

actively modify their energy usage in response to grid needs.

=  |mplicit Demand Response — This approach relies on Time-of-Use (ToU) tariffs to
encourage consumers to shift their energy consumption to off-peak hours. These
tariffs are designed to reflect consumption and generation patterns at the
distribution network level, motivating users to modify their energy behavior based
on price signals. Network operators, often in collaboration with National Regulatory
Authorities (NRASs), may require electricity providers to align end-user costs with
distribution grid benefits and overall system efficiency. Unlike explicit DR, implicit
DR influences consumer behavior indirectly, helping to alleviate grid stress and

optimize network utilization.

The MVNM tool is developed to support system operators in leveraging the
flexibility potential of Distributed Energy Resources (DERs) and buildings to
enhance grid planning and operations. By integrating an optimization framework,
the tool enables system operators to dynamically manage DR mechanisms,
reducing reliance on conventional grid reinforcement strategies and enhancing
the efficiency of congestion management, energy balancing, and reserve allocation
[25], [26], [27], [28].

Figure 27 illustrates the concept of the MVNM tool integration with the District
Digital Twin of EVELIXIA ecosystem.
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Figure 27. MVvNM tool integration with the District Digital Twin of EVELIXIA ecosystem

The main idea of the tool supports optimization for both explicit and implicit
demand response strategies. In explicit demand response, the DSO provides direct
financial incentives to consumers in exchange for adjusting their energy usage in
response to grid constraints or economic signals. In implicit demand response, ToU
tariffs are designed to influence consumption patterns by encouraging end-users
to shift their electricity usage to off-peak hours. Through these strategies, the
MVNM tool facilitates an adaptive and cost-efficient approach to managing energy
demand and supply while minimizing the need for renewable energy curtailment.
However, for the purpose of the EVELIXIA project, the optimization framework of
the tool only focuses on explicit demand response, in the sense that the DSO will

eventually design and send cost-effective DR activation signals.

By incorporating a flexible optimization structure, the tool allows operators to
evaluate and implement the most efficient flexibility allocation for different time
horizons, including mid-term (daily) and long-term (monthly) grid balancing needs.
This approach ensures that DER flexibility is utilized in an economically and
operationally efficient manner, allowing the grid to maximize renewable energy

integration while maintaining system stability.
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3.2.2.1 Objectives

IS12 - Technical Objective "TRL5 to TRL7": With original functionalities developed
and validated in the relevant environment of several past EU-funded projects (e.g.
ONENET GA No. 957739 and MASTERPIECE GA No.101096836), MVNM is introduced
to EVELIXIA at Technology Readiness Level (TRL) 5. Advancing towards TRL6, a
working version of IS12 is tested in a simplified medium-voltage (MV) distribution
grid of the Greek pilot as it has been described in Section 2.2.1.3 but built in
MATLBA/Simulink environment, as it is further described in Section 3.2.2.3. The final
version of the MvNM will undergo validation using simulation data generated by
IS15 - "intelligent Virtual Network" (iVN) (see Section 2.2.1), ensuring applicability to
each pilot site network under study. As part of EVELIXIA's platform integration,
progressing towards TRL 7 until the end of the project, future efforts and
refinements of the tool target demonstration of the technology across EVELIXIA
pilot sites, thus ensuring its applicability in balancing demand and supply without
violating operational bounds of the different energy networks in real-world market

designs and congestion management schemes.

IS12 - Scientific Objective: The MVNM tool is designed to optimize DR signals and
leverage available flexibility resources (i.e., upward and downward power shifts on
a daily basis), to support energy balance while minimizing the need for renewable
energy curtailment, through cost-efficient strategies from the system operator
side. The objectives of the MVNM tool are translated into functional goals that guide
the tool's operation and optimization framework. These are outlined as follows:

= Shifting Towards Dynamic Grid Management and Tariff Design: Traditional
long-term grid investment plans are no longer sufficient to address the dynamic
challenges of modern distribution networks. The MvNM tool enables a shift towards
more adaptive and flexible grid management practices by optimizing flexibility
over short-term planning horizons, such as daily and monthly timescales. By
incorporating short-time congestion management strategies, it enhances cost-
reflective decision-making, supporting the development of adaptive tariffs and
incentive mechanisms that align with E.DSO recommendations [29]. These
mechanisms ensure that the cost of flexibility is accurately reflected in pricing

structures, encouraging efficient energy consumption and network use.
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=  Enhancing Operational Efficiency: By providing DSOs with data-driven decision
support, the tool enhances the overall efficiency of the distribution network. It
optimizes the use of distributed flexibility to reduce the reliance on expensive
infrastructure reinforcements, allowing for smarter and more sustainable grid
operations. Through its optimization framework, the tool improves system
efficiency by strategically allocating available flexibility resources, leading to a more

reliable, cost-effective, and future-ready distribution network.

= Promoting Fairness, Transparency, and Equity in Flexibility Allocation: A key
objective of the tool is to ensure fairness in how flexibility is allocated among
network users. Flexibility is distributed in a non-discriminatory manner based on
the actual needs and constraints of the grid, as well as the availability of resources
fromm DERs and buildings. The tool supports transparent decision-making and
equitable market participation by aligning flexibility procurement strategies with
regulatory frameworks and stakeholder expectations, avoiding practices that could
disadvantage specific users or locations. In practical terms, this can be ensured via
a DSO that, in cooperation with the NRA, chooses the tariffs with respect to forward

(e.g., day-ahead) predicted conditions [30].

3.2.2.2 Methodology

The MVNM tool is designed to optimize the flexibility potential of DERs and
buildings, enabling system operators to manage grid congestion and maintain
system cost-efficiency (i.e.,, minimizing the overall system operational costs, such
costs associated with DR activation and generation curtailment). The problem
focuses on day-ahead optimization for a single day (i.e., the next day), which is a
practical approach, reducing computational complexity while retaining the

temporal granularity needed to analyze hourly variations.

The problem represents a decision-making strategy of the DSO, focusing on
applying appropriate cost penalties to maximize the operational efficiency of the
network by minimizing costs for demand and generation curtailment that needs
to be resorted for the security preservation of the network. The cost penalties
(€/MWh) represent monetary compensation (in €/MWHh) to incentivize participants
to consume more or less energy. The distribution tariff structure transfers part of

the network costs to the network users (consumers/prosumers), which may vary
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temporally and spatially. Although not directly dealing with the network tariff type,
the cost penalties are designed similarly to volumetric tariffs (€/MWh). This
variability is designed to signal prosumers about the cost of their energy usage or
generation at specific times and locations, encouraging more efficient usage
patterns and reducing strain on the grid. It also allows the DSO to account for local

network constraints and operational costs.

Upward flexibility refers to the ability to increase demand or energy consumption
at a network node when requested by the DSO. This might be required to balance
excess generation (e.g., from renewable sources like solar or wind) or stabilize the
grid during low-demand hours. Downward flexibility refers to load reduction. The
flexibility providers (via aggregators) react to these requests (DSO signals) by
optimizing their demand response actions, i.e., adjusting the flexibility limits

according to the maximum revenue.

The optimization framework can accommodate variable cost penalties trends
(from the system operator's point of view) that reflect the network needs. For
example, an upward flexibility increasing penalty trend indicates a time-dependent
cost structure, where the cost of upward flexibility increases during certain hours,
reflecting higher system demand or reduced availability of flexibility during those
hours and market conditions where upward flexibility is more expensive due to
limited resources or high opportunity costs. On the other hand, as regards
downward flexibility decreasing penalty trend, the penalty values are highest
during morning-mid-day hours and gradually decrease throughout evening-night
and early morning, suggesting that it is more costly to reduce demand during peak
hours and less costly during later hours (likely off-peak). The downward flexibility
penalty is typically used as an economic disincentive for the DSO to prevent
demand reduction when it is less efficient or not beneficial for the system. For
instance, during peak solar generation hours, reducing demand may not be
efficient because it could lead to excess energy curtailment. In addition, a variable
RES curtailment penalty can be used based on the cost of lost energy and time-of-

day variations or market conditions.
The tool optimization framework is depicted in Figure 28.

The process begins by initializing parameters and constants, which include the

hourly demand profiles of network users, renewable energy generation forecasts,
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and grid capacity and congestion limits (for the EVELIXIA project, these inputs are
derived for the iVN simulation engine, IS15). Additionally, the flexibility potential of
DERs and buildings is incorporated, representing their upward and downward
flexibility margins (for the EVELIXIA project, this input is derived from the Flex
Forecasting tool, IS4). These parameters form the foundation for determining the

flexibility activation strategies required for grid balancing.

Following initialization, the optimization problem is structured for a 24-hour
horizon, where flexibility penalties are assigned to upward and downward energy
shifts. At this step, the parametric analysis setup is parametrized to account for
varying flexibility margins across different nodes and penalty multipliers for upward
flexibility, thus enabling the tool to evaluate multiple scenarios under different

flexibility and pricing conditions, if needed.

Before the optimization algorithm, the pre-optimization step is performed to
compute excess renewable energy generation from distributed sources such as PV
or wind. This step identifies the available upward flexibility margins for each
network node and calculates the amount of excess energy that can either be
utilized through demand response or curtailed when necessary. The input is the
power flow analysis for the initial state of the network (baseline profiles,

congestion), conducted by the simulation engine.
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Figure 28. MVNM flowchart
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The optimization problem is formulated as a cost minimization function that aims
to minimize the operational costs associated with three key corrective actions:
generation curtailment, upward flexibility activation, and downward flexibility

activation, which can be defined as follows:

mincop = Zgzl(alpcurt,h + azpflex—up,h + a3Pflex—down,h) Eq. 3221

where C,, represents the total operational cost, P.urh is the curtailed power at hour
h, Priex-up,n IS the power shifted upward, and Prex-downh IS the power shifted downward.
The parameters a; a2, as are weight factors reflecting the cost priorities for
curtailment, upward flexibility, and downward flexibility, respectively, which are

designed by the DSO.

The MVNM tool's optimization process is formulated as a linear programming
problem, enabling efficient flexibility allocation, ensuring cost-effective grid
balancing while respecting operational constraints such as energy neutrality,

congestion limits, and demand flexibility bounds.

The optimization problem considers multiple constraints to ensure feasibility and
reliability in the power network. Energy neutrality is enforced by ensuring that the
total upward and downward flexibility adjustments balance out over the defined
time horizon (energy shifts maintain a net-zero impact over the 24-hour period), as

follows:

ZheH(Pflex—up,h) = ZheH(Pflex—down,h) Eq 3222

Flexibility bounds are imposed to limit the activation of demand response
resources within predefined margins. The upward and downward shifts are
restricted by the maximum available flexibility at each node, ensuring that network

constraints are not violated:

0< Pflex—up,h < Pmax—up,h ’ 0< Pflex—down,h < Pmax—down,h Eq- 3223

where Prax-uph aNd Pmax-downn are the maximum available flexibility to increase above

and reduce below baseline consumption at each node, respectively.

Additionally, curtailment limits are established to prevent excess renewable

generation from being curtailed beyond the available capacity:

0 < Peyren < Pres—gen,h Eq.3.22.4
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where Presgenn IS the renewable energy generation available at hour h.

The optimization framework also accounts for network constraints, ensuring that
power balance is maintained across the grid. Time-specific flexibility allocation is
introduced to allocate downward flexibility during predefined compensation
periods, ensuring that flexibility adjustments are scheduled efficiently over the daily
horizon (e.g,, Priex-down,n dUring compensated hours equals Priex-uph

during upward shift hours).

To manage congestion, the optimization ensures that power flows do not exceed

the network's thermal and voltage constraints, imposing the following condition:
0< PgTid,h < Pgrid—max,h Eq.3.225
where Pgria-maxh represents the maximum permissible grid capacity.

Finally, the cost penalty structure prioritizes flexibility activation over curtailment

by enforcing:
a; > a,,as Eqg.3.2.2.6

which ensures that the system always seeks to utilize available flexibility before

resorting to renewable energy curtailment (based on Eqg. 3.2.2.7).

Once the optimization problem is solved, a post-optimization step updates the
demand profiles to reflect the optimized flexibility allocation. The results, including
the final flexibility shifts, curtailment levels, and operational costs, are assessed, and

power flow analysis is conducted to validate the network's post-optimization state.

The tool then performs a comparative analysis across different predefined
configurations, evaluating the impact of varying flexibility margins and penalties.
These outputs can serve as input in the Aggregated Demand Portfolio Manager

tool (I1S13), which is described in Section 3.2.3.

The final outputs include the optimized flexibility allocation, curtailment results,
updated load profiles, and key operational metrics such as the total cost of
acquiring flexibility for the DSO, validation of energy neutrality, and congestion

levels.
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3.2.2.3 Evaluation & Results
Case study network set-up

For the evaluation of the MVNM tool functionality, a case study has been set up and
tested, regarding grid flexibility and congestion management from the DSO side.
The network under study has been built in MATLBA/Simulink environment, to
represent a medium-voltage (MV) distribution grid where different types of loads
and DERs interact under the coordination of a high-voltage/medium-voltage
(HV/MV) substation. The purpose of this setup is to assess how the developed tool
can optimize flexibility provision, minimize RES curtailment, and support

congestion management through demand-side response.

The simplified network is based on the Greek pilot site of the project (derived from
EVELIXIA Deliverable D1.3: Pilot Site Surveys results, Use Cases definition and
market needs analysis), as it is described in Section 2.2.1.3. Given that at the time
that IS12 was tested the grid modelling in iVN was under development, so, for IS12
validation purposes, the network was built in MATLAB/Simulink R2024a (using the
same static data and only including electricity grid modelling). The test-network
includes four nodes; at the center of the system is Node 1, the HV/MV substation,
which acts as the main interface between the high-voltage (HV) transmission grid
and the MV distribution network. This node is responsible for monitoring the overall
load, detecting congestion, and managing flexibility bids (by the DSO) across the
connected nodes. It plays a key role in balancing supply and demand, ensuring that
available flexibility is used efficiently before resorting to more expensive or

disruptive measures such as curtailment or external reserves.

Two major loads are connected to the MV network; Node 2, representing a research
institute (namely CERTH/CPERI Building), is characterized by its potential to
provide upward and downward flexibility, meaning that it can shift its electricity
consumption in response to system needs. This node actively reports its load
patterns and any available flexibility resources, such as on-site battery storage or
controllable demand. In contrast, Node 3, which represents a hospital (namely
Mpodosakeio Hospital), is categorized as a critical load. Due to its essential nature,
its ability to reduce consumption is limited, but it may still offer some flexibility

through backup generation or storage assets. The priority for this node is to ensure
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a reliable and uninterrupted power supply, while still participating in grid-

balancing mechanisms when possible.

Node 4 represents the aggregated PV plants’ production connected to the MV
network, offering power generation data and potential flexibility through
curtailment services. Under normal conditions, the PV plants operate at maximum
production with minimal restrictions. However, during congestion or imbalances,
the output can be curtailed to maintain system stability. Ideally, instead of
curtailment, the tool aims to redistribute excess PV generation by utilizing available

flexibility from Nodes 2 and 3, ensuring a more efficient use of renewable energy.

The developed tool integrates this grid setup into its optimization framework,
allowing the DSO to evaluate different flexibility procurement strategies (i.e., design
appropriate electricity tariffs and incentive-based mechanisms). By leveraging the
load-shifting capabilities of Nodes 2 and 3, the tool determines the optimal
allocation of flexibility, prioritizing cost-efficient solutions that minimize
unnecessary PV curtailment. The optimization also considers economic factors,

assigning flexibility provision based on the cost-effectiveness of different nodes.
Case study implementation

At the first step of the tool's implementation, the input data from the simulation
environment (which in this case is MATLAB/Simulink, performing the power flow
analysis of the network under study) is loaded to define the conditions of the
selected grid operation scenario. The primary inputs include the hourly electricity
demand for Node 2 (representing a research institute) and Node 3 (representing a
hospital), as well as the PV generation at Node 4. The demand values provide the
baseline energy consumption of the research institute and the hospital, while the
PV generation data indicates the available renewable energy supply that could
potentially be curtailed or redistributed depending on grid conditions. Beyond
demand and generation data, the tool also incorporates predefined flexibility
margins for Nodes 2 and 3. These margins define the extent to which each node
can adjust its electricity consumption in response to system requirements. By
applying these margins, the tool calculates the upper and lower bounds for
potential shifts in demand. The upper bound represents the maximum additional
consumption that can be accommodated, while the lower bound determines the

minimum consumption level that can be maintained while still providing
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downward flexibility. By varying these margins, the tool can explore how flexibility

availability impacts grid operations.

For the Greek network case study, the penalties applied in the optimization process
were designed to balance flexibility activation costs and minimize renewable
energy curtailment. The penalty values used are i) the Upward Flexibility Penalties,
applied to the cost of increasing demand at specific network nodes when required
by the Greek DSO; the values were dynamically adjusted using a penalty multiplier,
which scaled the base penalty values for upward flexibility at each node, ii) the
Downward Flexibility Penalties, used to discourage excessive load reduction when
it was not beneficial for the system; the penalty values followed a decreasing trend,
where they were highest during peak hours (morning and mid-day) and gradually
reduced during off-peak periods (evening and night) and iii) the Renewable Energy
Curtailment Penalty - a fixed penalty of 115 €/MWh was applied [30], to minimize
curtailment of RES; this penalty discouraged the tool from resorting to curtailment
unless flexibility resources were insufficient to absorb the excess generation. The
integration of these penalties into the cost function of the optimization model,
allows the tool to test scenarios where increasing consumption is either cheap or
expensive, influencing the optimization process. As results, the practical value of
these cost penalties for the Greek DSO (HEDNO) lies in the following aspect: a)
Testing Grid Behavior Under Different Scenarios: By varying the flexibility margins
and penalties, the tool can simulate how Nodes 2 and 3 respond to different levels
of flexibility availability and cost. HEDNO can use these insights to design optimal
flexibility strategies, such as encouraging flexibility participation from nodes with
lower penalties and identifying the impact of tighter flexibility margins on grid
stability, b) Policy and Tariff Design: The penalty multipliers can help HEDNO
evaluate the financial implications of different pricing strategies for flexibility

services.

Another key aspect of the input processing is the estimation of excess PV
generation. The tool calculates the difference between the PV output at Node 4
and the combined demand at Nodes 2 and 3. If PV generation exceeds local
consumption, the tool identifies this surplus as potential excess energy that could
be curtailed if no flexibility is available to absorb it. To avoid unnecessary

curtailment, the tool simultaneously evaluates the total available flexibility from the
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can be reallocated rather than curtailed. It is noted that the input data regards
several different days responding to multiple conditions of the network under
study. Figure 29 illustrates the input data for one indicative day, in which the PV

generation excess demand for certain hours within a day.
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Figure 29. Hourly Demand (Nodes 2 and 3) and PV Generation (Node 4) for the
network under study, for a selected day

Figure 30 depicts the flexibility margins considered in this case study for Nodes 2

and 3, equally set to 15% around the baseline consumption of the nodes.
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Figure 30. Comparison of the baseline demand (Nodes 2 and 3) and shift upward and
downward bounds for the network under study, for a selected day

Finally, Figure 31 presents the potential utilization of the excess PV energy if

maximum upward flexibility from Nodes 2 and 3 is activated at the specific over-

production timeframes.
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Figure 31. Potential utilization of the excess PV energy if maximum upward flexibility

from Nodes 2 and 3 is activated (based on Figure 29 and Figure 30)
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These outputs are the necessary input for the next stage of the tool, where the
optimization process will determine the most efficient way to allocate flexibility
resources and minimize curtailment, while ensuring grid economic viability from

the DSO perspective.

Moreover, at this step, the tool processes the pre-optimization power flow results
to assess the baseline power flow conditions before any flexibility allocation or
optimization adjustments are applied. This serves as a reference point for
comparison with the post-optimization power flow, helping to evaluate the impact
of flexibility on grid operation. The tool establishes key system constraints related
to voltage and power flow limits. The upper and lower voltage bounds for this case
study are set at 1.05 pu and 0.95 pu (common standards, valid for the Greek
network), respectively, ensuring that voltage levels remain within acceptable
operational limits. Additionally, power flow constraints are imposed, restricting
active power transfer at higher levels than the line capacity (set to 500 kW for the
case study), representing the allowable range for the transmission line capacity for

the case study.

Next, the optimization step in the Greek case study for the MvVNM tool is
implemented to manage flexibility allocation and PV curtailment while minimizing
operational costs for the system, managed by the DSO. The goal is to maximize the
use of available flexibility at the two nodes of the network, activating their flexibility
capabilities to absorb excess PV generation and maintain the balance of the grid in

the most cost-efficient way.

In this case, the decision variables of the optimization problem (formulated as a
linear problem in Eqg. 3.2.2.1) include the upward and downward shifts in demand at
the two nodes, as well as PV curtailment. Upward shifts represent an increase in
demand at a given hour, allowing the system to absorb excess PV generation,
whereas downward shifts compensate for these adjustments at different times to
maintain energy neutrality within the daily horizon. PV curtailment is only
introduced when flexibility is insufficient to fully accommodate the excess PV

generation.

The optimization process is subject to several constraints. A power balance
constraint ensures that at each hour, the sum of flexibility adjustments and PV

curtailment matches the available excess PV generation. In cases where flexibility
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alone is insufficient, PV curtailment is activated. The problem formulation also
includes energy neutrality constraints, requiring that any upward shift in demand
at a node is later compensated by a downward shift over the optimization period.
This ensures that no net energy imbalance occurs at the end of the day. This allows
the system operators to manage effectively not only PV curtailment, but also load
congestion that usually occurs during late evening timeslots. Thermal constraints
are also incorporated into the problem, ensuring that power flows performed in the
simulation environment remain within the maximum allowable line capacity. The
flexibility at each node is further constrained by the predefined margins (in this
case 15% for both upward and downward flexibility for both nodes under study),

which limit the extent to which demand can be shifted up or down.

The cost function in this optimization is formulated to minimize the total cost of
utilizing flexibility and PV curtailment. The penalties for activating flexibility are
applied dynamically, with economic allocation ensuring that the node with the
lower penalty is allocated more power. This economic prioritization follows an
inverse relationship between penalty values and flexibility allocation, ensuring cost
efficiency in the optimization process. Additionally, PV curtailment carries a fixed
high penalty cost, encouraging the system to utilize flexibility as much as possible

before resorting to curtailment.

The problem for the present tool implementation is solved using a linear
programming approach, where the objective function is minimized while satisfying
all equality and inequality constraints. The MATLAB linprog solver is used to
compute the optimal values for flexibility activation and PV curtailment. The
solution provides the optimal flexibility schedule for both nodes, the total flexibility
cost, and the amount of PV curtailment required. If the solver successfully
converges, the results are post-processed to validate energy neutrality, ensuring
that upward and downward flexibility adjustments balance over the day. The

optimized flexibility and curtailment results for this case are visualized Figure 32.
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Figure 32. Optimized flexibility and curtailment results (Nodes 2 and 3) for the
network under study

The results presented in Figure 32 are send to the simulation environment, to
perform again the power flow analysis, using the optimized consumption curve for
the load nodes (Nodes 2 and 3) and the optimized PV production curve (Node 4).
The power flow results with the updated set-points are sent back to the MvNM tool,
for the post-optimization power flow evaluation. These results are presented in

Figure 33, Figure 34 and Figure 35.
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Figure 33. Post-Optimization power flow results for the network under study: Active
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Figure 34. Post-Optimization power flow results for the network under study:

Reactive power flow at Nodes 2, 3, and 4
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Figure 35. Post-Optimization power flow results for the network under study: Voltage
magnitude - in per unit (pu) - at Nodes 2, 3, and 4

The variation of the power consumption for both flexible nodes after the optimized
set-points compared to their baseline consumption, as well as the curtailed PV
generation set points are depicted in Figure 36, Figure 37 and Figure 38, via a
comparison between the pre-optimization power flow simulation results and the

post-optimization power flow simulation results.
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Figure 36. Pre and Post-Optimization power flow results for the network under study:
Active power flow for Nodes 2, 3, and 4
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Figure 37. Pre and Post-Optimization power flow results for the network under study:
Reactive power flow for Nodes 2, 3, and 4
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Figure 38. Pre and Post-Optimization power flow results for the network under study:
Voltage magnitude - in per unit (pu) - at Nodes 2, 3, and 4

As Figure 36 and Figure 37 show, the optimized active and reactive power flows at
node ensure energy balance in the network under study, exploiting the maximum
available flexibility of the loads to absorb the PV generated energy during high
production hours. As a result, the voltage profile after the optimization at every

node is improved (i.e, reduced overvoltage).

Overall, the presented case study verifies the MVNM optimization framework can
effectively integrate demand flexibility to manage excess RES generation, ensuring
cost-efficient grid operation while maintaining system constraints and minimizing
unnecessary curtailment. Although simplified, the case under study proves the

validity of the optimization process of the tool.

3.2.2.4 Next Steps

The next steps should focus on implementation, validation, and integration of
MVNM within the project’s associated services and relevant pilot sites. The goal is to
ensure that the tool optimally allocates flexibility, supports congestion
management, and reduces grid operational costs while complying with existing
market and regulatory frameworks. The proposed action plan by the end of the task

(i.e., M33) is the following:
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=  Streamline a structured data exchange via the EVELIXIA Services Broker that
enables seamless data extraction from IS15-iVN, in parallel with the grid modelling

progress and power flow simulations.

= Astructured data exchange will enable seamless data transactions between the

MVNM and other ISs (IS4, IS13 and possibly other), as described in the methodology.

= |terative engagement with grid-level actors, including system operators and
aggregators, to co-define scenario development and parameter definition. For
practical validation, the tool must be integrated into an operational DSO network
or microgrid where real-time grid data is continuously fed into the system (this
should be done via the district digital twin of the project). The system operators for
the pilot sites should provide feedback on the tool's usability and effectiveness,
enabling refinements based on real-world operational insights. Since the tool
integrates cost penalties and flexibility bids, it is crucial to assess its response to
variations in electricity prices fromm market platforms such as EPEX Spot and Nord
Pool. Different day-ahead and intra-day electricity price signals should be
introduced where relevant to evaluate whether the tool can optimize demand-side

participation.

3.2.3 Aggregated Demand Portfolio Manager (1S13)

Modern energy grids are increasingly challenged by the need to balance supply
and demand while integrating renewable sources and ensuring operational
efficiency. Variations between the predicted and actual energy consumption at the
building level can lead to grid instability, increased operational costs, and
underutilization of available distributed energy resources. At the same time the
consumption profiles of buildings can be deviated at some extend, still sustaining
the thermal comfort behaviour of occupants. This way there are needs to be fulfilled
from the building’'s side and requests that would alleviate the efforts to be
performed from the DSO side avoiding stress and congestion in the grid. The
Aggregated Demand Portfolio Manager (ADPM) serves as an intermediate stage
between the two aforementioned sides aiming to enable day-ahead modifications
on the consumption profile schedule, i.e., re-dispatch operation. By leveraging

aggregated building data and integrating dynamic demand response signals from
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Distribution System Operators (DSOs), ADPM plays a critical role in supporting grid

balancing at the district scale.

Therefore, the ADPM service builds upon the growing body of research that
emphasizes the importance of flexible demand-side management to enhance grid
resilience. Traditional optimization methods, such as mixed-integer programming,
often rely on deterministic assumptions that can lead to suboptimal outcomes in a
dynamic operational environment. In contrast, ADPM employs advanced episodic
reinforcement learning and continuous policy-search techniques. This enables it to
actively trade available supply and demand packages, plan resources more
effectively, and minimize both economic and technical risks associated with grid
operations. The successful integration of these methodologies is expected to
enhance operational efficiency, reduce the reliance on expensive grid
reinforcement, and support the broader transition towards sustainable energy

systems.

Figure 39 illustrates the general workflow of this service. More specifically,
Aggregated Demand Portfolio Manager is designed to aggregate baseline energy
consumption predictions and building-specific flexibility bounds—ensuring that
adjustments to energy consumption do not compromise thermal comfort. The tool
receives inputs from individual building systems regarding their consumption
behaviors and flexibility limits, as well as district-level DSO requests that specify
desired adjustments along with associated incentives. Using these inputs, ADPM
forms aggregated flexibility pools that allow energy aggregators and retailers to re-

plan and re-schedule demand on a daily basis though recommendations.

The core of ADPM's functionality is its optimization framework, which is
underpinned by a reinforcement learning approach. This framework continuously
searches for and updates optimal energy trading policies in a day-ahead mannetr,
actively fulfilling thermal comfort needs and reducing electricity bills from the
users’ side, while also mitigating risks and alleviating DSO's effort in congestion
management. By aligning building-level flexibility with the operational constraints

of the grid, ADPM ensures that the aggregated demand portfolio not only meets
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Figure 39. General scheme of Aggregated Demand Portfolio Manager
3.2.3.1 Objectives

IS13 - Technical Objective "TRL5 to TRL7": The primary technical objective of IS13
is to advance the Aggregated Demand Portfolio Manager from TRL5 to TRL7. At
TRLS5, the tool has been validated in controlled, simulated environments and has
demonstrated its capability to process building-level energy data and integrate
district-level DSO signals. The next phase focuses on robust system integration,
responsiveness, and validation in real emulated grid scenarios. Key technical
enhancements include: a) Integration and Interoperability; b) Robustness, and; c)
Scalability and Resilience; Regarding the first point seamless interfacing with other
EVELIXIA modules (e.g., day-ahead flexibility forecasting and DR response systems)
is expected following NGSI-LD standards. The second point aims at enhancing the
tool's computational efficiency and robustness to support energy re-schedule
through recommendations, i.e, re-dispatch in dynamic grid conditions. The last
part aims to demonstrate consistent performance under varying operational loads

and diverse grid scenarios through pilot diverse cases. These improvements will not
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only enhance the tool's operational reliability but also ensure its practical

applicability, paving the way toward TRL 7.

IS13 - Scientific Objective: The scientific objective of IS13 is to develop and validate
an advanced decision-making framework for aggregated demand management
that leverages episodic reinforcement learning. This approach aims to provide an
enhanced performance compared to traditional deterministic optimization
techniques by actively adapting to the dynamic and uncertain nature of energy
consumption and grid conditions. One of the primary scientific pursuits is the
development of advanced optimization techniques that employ continuous policy-
search mechanisms. This enables active trading of flexible energy supply and
demand packages in a day ahead manner. Also, this approach integrates multiple
data streams—including baseline consumption predictions, building flexibility
bounds, and DSO incentives—to establish an adaptive, data-driven resource
planning strategy that minimizes both economic and technical risks, sustaining
thermal comfort and maximizing self-consumption in cases where PV systems are
included. Additionally, the reinforcement learning framework is rigorously
validated in dynamic environments, effectively managing and optimizing
aggregated energy portfolios under diverse operational conditions. This holistic
strategy not only improves grid stability but also maximizes revenue opportunities
for energy aggregators. Through this innovative approach, IS13 seeks to provide a
scientifically rigorous foundation for autonomous energy management that aligns

with the evolving needs of modern grid systems.

3.2.3.2 Methodology

In our approach, we adopt an episodic reinforcement learning framework to
optimize the aggregated demand portfolio. In this formulation, each episode
corresponds to a full day segmented into hourly intervals. At each time step t, the
RL agent observes the current state—including baseline consumption, residual
demand, flexibility bounds, DSO requests and incentives for fulfilling those requests
and retail price tariffs—and then selects an action a; to adjust the consumption
profile. The agent’s objective is to learn an optimal policy that minimizes the

monetary cost while satisfying grid constraints and preserving thermal comfort.
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The overall cost—and hence the reward—is designed to reflect several critical
aspects of the problem:

e Residual Demand Management: Ensuring that the adjusted consumption
aligns with the baseline so that the net energy balance is close to zero (before
and after load scheduling).

e Price Awareness: Encouraging the agent to adhere to DSO signals when
available and to extrapolate price tariffs in their absence, thereby reducing
monetary costs.

o Flexibility Constraint Compliance: Penalizing deviations that would violate
the flexibility bounds of individual buildings, thus maintaining thermal
comfort.

Formally, the residual demand is updated as:
dt+1 = dt + bt - at Eq 3231

where b, represents the baseline consumption. The reward at time t is then defined
as:

Ry = —Y.C Eq.3232
where (; is the residual demand cost being aimed to produce consumption profile
with close to zero energy balance before and after scheduling, C, serves for price
awareness cost term prompting the agent to follow requests provided by the DSO
if exist, and extrapolate price tariffs while there are no DSO requests, thus aiming
at monetary cost reduction in both cases. Finally, C; and C, stand for the flexibility
violation factors inducing penalization in cases where the reinforcement learning
agent outcomes energy consumption decisions that violate thermal comfort by

deviation out of the flexibility bounds.

More specifically, regarding residual demand cost, for t=23 (end of the day on an

hourly basis):
ldel
Ziiobk'dt >0

d
coef, -22'3 4, <0 Eq.3233
k=0 "k

0, otherwise

coefy -

C1:

While for cases where t<23:

lae=rfown 1\t+6
Coef3 223 bk ’pt > EZk=t pk ]
C = lawr) EqQ.32.34
t—Jt

coefs - TEN otherwise
=0
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If a distribution system operator signal is active (DSO_DR; # 0), C; is modified as

follows:
C, = coef, - 14— (et DSO.DR,)] Eq.3.2.3.5
Zk:o bk
For the price awareness cost C,, if DSO_DR, > 0:
Di t . .
—coefs - a; " p; (1 — 1+|bt‘|'l;(;(:)uz};t_at|)’ if ratio, > 1,
C, = . Eqg.3.2.3.6

Discount¢

—coef; - a; - 1——), otherwise
f3 - a Pt( 1+ —a,]

While in the case where DSO_DR, < 0, the variable £** is replaced by f4°%™ in the
corresponding parts of the previous equation. Also, ratio, = (f,;*¥ — b;)/DSO_DR, or
ratio, = (f*°"™ — b,)/DSO_DR, . For the case where DSO_DR,=0 then the cost
parameter becomes: C, = —coef; - a; * p;.

The reward terms for penalizing the upper and lower flexibility violation are given
by:

a1

. up
Ziio by ) lf A > f;r , EC] 3237
0, otherwise

Cs = coefy

_|at—ftdown| . down
C4 — CO€f3 Ziiobk ) I’f a’t < ft 4 Eq 3238

0, otherwise

Note that coef;.., are weighting parameters, while also Y23 b, serves as a
normalization factor using the total baseline energy in order to ensure consistent
scaling. Specifically, this factor enhances stability during training, ensures
proportional penalties across scenarios, and aligns the reward with real-world

performance metrics.

3.2.3.3 Evaluation & Results

To evaluate the performance of the Aggregated Demand Portfolio Manager, data
from the Greek pilot site were utilized. The conducted experiments were derived
using the Proximal Policy Optimization (PPQO) reinforcement learning algorithm. In
this pilot, each node corresponds to a single building. The reinforcement learning
agent was trained on five days of data and subsequently tested on three additional
days. During both training and testing, the agent’s objective was to produce an

optimal consumption profile—referred to as the Aggregated decision—that aligns
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with the DSO request where applicable, respects flexibility bounds, and responds

to incentive signals in the form of discounted prices.

Figure 40 and Figure 41 illustrate the behavior of the RL agent for Node 2 (CERTH)

and Node 3 (Hospital), respectively, on a representative test day. Each chart plots

multiple time-series:

Down Flex Bound (blue line) and Up Flex Bound (red line): Define the
allowable range of consumption that maintains thermal comfort.

Baseline (green line): The predicted (or originally planned) consumption for
each building.

Aggregated Decision (black dashed line): The RL agent's optimized
consumption profile.

DSO Request (purple line): The desired consumption adjustment signaled by
the DSO. Note that this is directly the desired trajectory to be followed by the
DSO rather than the difference from the baseline.

Price (orange dashed line): The standard retail price signal. The algorithm
takes into account this price profile for those hours of the day that DSO does
not produces a request. Future realizations will evaluate cases where this
profile is excluded meaning that the DSO does not allow deviations even if
DSO_DR, = 0.

DSO Discounted Price (orange dotted line): The price signal with a discount
applied as an incentive for following DSO requests. Notably, the DSO
Discounted Price applies the full discount only when the building or
aggregator fully meets the requested consumption adjustment. If the
request is only partially fulfilled, a proportionally reduced discount is applied
(e.g., via linear interpolation). This design encourages complete compliance

with the DSO request to maximize financial benefits.
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Figure 40. Consumption and pricing signals for Node 2 (CERTH) on Day 1. Down flex
bound (blue line); Up flex bound (red line); Baseline (green line); Aggregated decision
(dashed black line); DSO desired trajectory (purple line); Retail price tariff (dashed
orange line); DSO discounted price (dotted orange line)

When the DSO requests a deviation from the baseline consumption profile
(indicated by the purple line), the agent adjusts its aggregated decision
(represented by the black dashed line) to meet the grid’s requirements, ensuring
that the resulting profile remains within the prescribed flexibility bounds (the blue
and red lines). In periods without a specific DSO request, the agent is free to
optimize energy consumption based on pricing signals, where the standard retail

price (dashed orange line) aligns with the discounted price (dotted orange line).
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Figure 41. Consumption and pricing signals for Node 3 (Hospital) on Day 1. Down flex
bound (blue line); Up flex bound (red line); Baseline (green line); Aggregated decision
(dashed black line); DSO desired trajectory (purple line); Retail price tariff (dashed
orange line); DSO discounted price (dotted orange line)

Notably, the discounted price applies the full discount only when the entire DSO
request is fulfilled; if the request is only partially met, a proportionally reduced
discount is provided through linear interpolation to encourage complete
compliance. Overall, the agent’'s aggregated decision consistently remains within
the flexibility bounds, confirming that thermal comfort constraints are maintained
despite dynamic adjustments in consumption.

Table 2 summarizes the percentage cost differences and percentage residual
demand differences for each node on three test days, compared to the baseline

scenario.
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the baseline for Node 2 and Node 3.
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Day 1 9.8 4]
Node 2 -
Day 2 8.6 -53
Certh Y
Day 3 12.8 -7.6
Day 1 4.9 -3
Node 3 -
ode 3 Day 2 21 3]
Hospital
Day 3 56 -58

The analysis reveals several key insights regarding the performance of the RL agent.
First, the positive percentage values in the “Percentage Difference Cost” column
clearly indicate a monetary cost reduction relative to the baseline. Specifically,
Node 2 exhibits cost savings ranging from 8.6% to 12.8%, while Node 3 achieves
more modest yet still notable savings between 2.1% and 5.6%. In contrast, the

|n

“Percentage Difference Residual” values are negative across all test days, implying
that the agent’s decisions resulted in a slightly higher total energy consumption
compared to the baseline. This increase in consumption is not necessarily a
negative outcome; rather, it reflects a strategic shift where energy is consumed
during cheaper periods or adjusted to meet DSO requests, rather than an overall
inefficiency in energy use. However, in future realizations the agent will be
prompted to reduce this percentage gap which may increase more the energy

savings and the monetary cost.

Furthermore, the degree of cost savings is closely tied to the incentive policies and
the available flexibility of each building. Higher discounts and greater flexibility
allow the RL agent to shift demand more aggressively, leading to larger cost
reductions. Looking ahead, future project stages will explore different incentive
policies, and the agent may be further constrained to maintain the same total daily
energy consumption as the baseline. This will provide additional insights into how
incentive design interacts with flexibility to shape both cost and consumption

outcomes.
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In summary, the results underscore several key takeaways. The RL agent
demonstrates effective coordination with DSO requests by adjusting consumption
profiles in a manner that aligns with grid needs. Even in scenarios where overall
consumption increases, the strategic load shifting achieved by the agent results in
significant cost reductions, highlighting the economic benefits of an incentive-
driven demand response approach. Moreover, the methodology is scalable and
holds promise for extension to additional nodes and more complex energy systems,
where multiple energy vectors—such as heating, cooling, and electricity—are

managed concurrently.

It is important to note that while the pilot results were obtained with each node
representing a single building, we also used simulated data to illustrate the
functionality of the system at a district level. In the simulated scenario, a district is
constituted by three buildings, and the DSO requests are provided at the district
level. The agent then produces decisions for each building accordingly, ensuring
that the aggregated consumption profile meets the DSO's requirements while still
respecting the individual flexibility and thermal comfort constraints of each
building. This approach demonstrates the scalability of our solution and its

potential applicability in more complex, multi-building district scenarios.

In this scenario, the IS13 tool is tested on a node composed of three distinct
buildings, each with its own baseline consumption profile and flexibility bounds.
The overall objective remains the same: to sustain thermal comfort within each
building while complying with any DSO requests at the district level. Figure 42
depicts the consumption profiles and pricing signals for each individual building,
while also the aggregated profile of the total consumption at the node/district level.
In each plot, the black dashed line represents the agent's recommended
consumption, which seeks to follow the DSO request (purple line) whenever
possible and otherwise exploit lower price tariffs (orange dashed and dotted lines).
A key observation is that, during the evening hours (approximately 18:00 to
midnight), the agent’'s recommended profile diverges significantly from the purple
line. This deviation occurs because, in that time frame, the DSO request effectively
aligns with the baseline consumption (indicating no additional requirement for

demand shifting). Consequently, the agent is “free” to respond purely to price
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Figure 42. Combined visualization of the three-building node at both the individual-
building and aggregated district levels. The left subfigures show each building’s
baseline (green), flexibility bounds (blue and red), and the RL agent’s recommended
consumption (black dashed), while the right panel aggregates these profiles to the
district level. The purple line indicates the DSO’s requested consumption, and the
orange lines reflect price signals (with a dotted line representing the discounted
price). The circled areas highlight periods with no active DSO request, during which
the agent shifts consumption based primarily on price tariffs.

Table 3 provides the percentage difference in cost and residual consumption for
each building, while Table 4 summarizes the same metrics at the aggregated
district level. The results confirm that the agent's profile consumes more energy
overall than the baseline (negative values in the Percentage Difference Residual
column), yet yields a cost reduction of approximately 8.8% at the district level. This
outcome highlights how strategic load shifting can produce monetary savings

even if total consumption increases slightly. Over time, these results could be
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residual values.

Itis also worth noting that the agent exhibits performance similar to the Greek pilot
case because the same hyperparameters and penalty functions were used in both
scenarios. Nonetheless, these findings demonstrate the scalability of the approach:
the RL agent can handle situations where a node consists of multiple buildings,
each with individual constraints, while still meeting higher-level DSO requirements.
Moving forward, additional metrics—such as the percentage of the Aggregated
Decision that precisely aligns with the DSO request and a more explicit measure of
thermal comfort impact—will be introduced. Preliminary observations, however,
indicate that the agent effectively balances grid demands, cost savings, and user

comfort at this aggregated district level.

Table 3. Percentage difference in cost and residual consumption for each building in
the multi-building node scenario, compared to the baseline.

1 10.1 -1.6
2 82 -53
3 8.1 -5.4

Table 4. Aggregated cost and consumption differences at the district level,
summarizing the overall performance of the three-building node scenario relative to
the baseline.

District Level 8.8 -3.99

3.2.3.4 Next Steps

The following steps are planned to further refine and scale the Aggregated
Demand Portfolio Manager:

e Refinement of incentive structures and reward function: Optimize discount

policies to ensure that the full discount is applied only when DSO requests

are fully met, with linear interpolation used for partial compliance. At the
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same time, reformulate the reward function to support different policies and
better guide the agent's decision-making.

e Zero net energy targeting: Modify reward functions and adjust agent
parameters to aim for zero net energy difference over the day, reducing the
negative residual consumption values.

e Enhanced performance metrics: Incorporate additional metrics such as the
percentage of the aggregated decision aligned with DSO requests and
explicit thermal comfort penalties to better quantify performance.

e Scalability and robustness testing: Evaluate the tool's performance in larger,
multi-building district scenarios. Also, adjust hyperparameters and penalty
functions to handle more complex energy systems.

e Integration of additional pilot data: Expand the evaluation to include data
from additional pilot cases, enhancing the robustness of the results. Also,
transition from simulated data to real-world pilot data if feasible to validate
the system’s effectiveness under actual operating conditions.

e Integration with Task 4.6: Collaborate with Task 4.6 to ensure seamless
interoperability with other components of the EVELIXIA platform, enhancing

overall decision-making and grid management capabilities.
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4 CONCLUSIONS

This deliverable reports on the development of the Autonomous District Digital
Twin (ADDT) within the EVELIXIA GCrid-to-Building (G2B) Services Framework,
designed for validating various scenarios at the district level in a virtual testbed. The
ADDT expands the Buildings as Active Utility Nodes (BAUNs) concept to entire
districts, enabling effective scenario testing, energy profiling, optimized energy
Mmanagement, and maintenance strategies across multiple building nodes and grid
networks.

Two primary objectives have guided this deliverable. The first objective involves the
development of EVELIXIA's Network Awareness and Forecasting Framework
(NAFF), which includes innovative solutions such as Multi-Vector Crids Energy
Modelling and Simulation (IS15) — an intelligent Virtual Network (iVN) model
facilitating city or community-level energy distribution simulations —and the Multi-
Vector Smart Grid Maintenance Service (IS14), enhancing predictive maintenance
through asset health monitoring and maintenance optimization simulations.

The second objective addresses the development of EVELIXIA's Autonomous
District Decision Support Framework (ANDSF). It comprises the Grid Investment
Planning Assistant Service (IST1), supporting strategic long-term planning through
proactive identification of future network bottlenecks via comprehensive Cost-
Benefit Analysis (CBA); the Multi-Vector Energy Network Manager Service (I1S12),
offering grid operators solutions for local congestion management through
flexibility-driven actions; and the Aggregated Demand Portfolio Manager Service
(1S13), facilitating aggregators’ active participation in energy balancing markets
through demand portfolio optimization.

The outcomes of tasks T4.3 and T4.4 demonstrate potential for applicability across
diverse network contexts and operational environments. The developed models
and frameworks, through their generalizable structure and adaptability to specific
stakeholder needs, underline a solid foundation for replication and scalability.
Moving forward, efforts will be focused holistically on implementing, validating, and
integrating all developed services within a cohesive, operational ecosystem.
Essential to this integration are structured data exchange processes facilitated
through the EVELIXIA Services Broker, ensuring seamless interaction between

simulation engines, decision-support services, and real-time data streams. An
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emphasis will be placed on validation through iterative collaboration with
stakeholders such as system operators, aggregators, and utilities, to co-develop
scenarios, define operational parameters, and refine tools through real-world
insights. Additionally, addressing identified barriers — including data heterogeneity,
integration complexity, service interconnections, and operational variability — will
be crucial. Continued partners’ engagement and access to real mandatory
operational data from the networks under study, are necessary to ensure successful

implementation, scalability, and adoption of the proposed innovative solutions.
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6 ANNEXES
6.1 Annex1

Modified IEEE 33-bus test system, adapted for GIPA test-run analysis (Section
3.2.1.3). The configuration is implemented in MATPOWER v8.0 using the following
data structures in MATLAB R2024a:

function mpc = case33_modified
%CASE33_MODIFIED Modified 5-bus distribution test system in MATPOWER format

%% MATPOWER Case Format : Version 2
mpc.version = '2';

%% System MVA base
mpc.baseMVA =100;

%% Bus data
% [bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin]
mpc.bus = [

130 O 001100 12661 105 0.95; % Slack bus

215 25 0 01 100 1266 1 1.05 0.95; % Medium-sized load center
318 400 01 1001266 1105 0.95; % Industrial/commmercial load center
4 13 150 01 100 1266 1 1.05 095, % Residential/mixed-use load center
520 O 01 100 12661 1.05 0.95; % Renewable energy injection

I;

%% Generator data
% [bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pcl Pc2 Qclmin Qclmax
Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_qg apf]
mpc.gen = |
1 O O 500 -500 1.01001 100 O O OO OO 010 10 30 O O;
% Slack bus generator
5 -10 O 500 -500 1.01001 0 -100 O O O O O 10 10 30 O ©;
% Renewable energy source

I;

%% Branch data
% [fbustbusr x b rateA rateB rateC ratio angle status angmin angmax]
mpc.branch = |

1 2 0.0922 0.0470 O 100 100 10O O O 1 -360 360;

2 3 04930 02511 O 100 100 100 O O 1 -360 360;

3 4 03660 0.1864 O 100 100 10O O O 1 -360 360;

4 5 03811 01941 O 100 100100 O O 1 -360 360;

I;

%% Generator cost data

% [type startup shutdown n c(n-1) ... cO]
mpc.gencost=[ 2 0 0 3 0.02 20 O;];
end
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