

HORIZON-CL5-2022-D4-02

EUROPEAN COMMISSION

European Climate, Infrastructure and Environment Executive Agency

Grant agreement no. 101123238

Smart Grid-Efficient Interactive Buildings

DeliDX.X

Deliverable D3.1

Platform External Communication and
Common Information Management

D3.1 - Platform External Communication and 2
Common Information Management

Project acronym EVELIXIA

Full title Smart Grid-Efficient Interactive Buildings

Grant agreement
number

101123238

Topic identifier HORIZON-CL5-2022-D4-02-04

Call HORIZON-CL5-2022-D4-02

Funding scheme HORIZON Innovation Actions

Project duration 48 months (1 October 2023 – 30 September 2027)

Coordinator
ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS
ANAPTYXIS (CERTH)

Consortium
partners

CERTH, RINA-C, CEA, CIRCE, UBE, HAEE, IESRD, UNIGE,
SOLVUS, R2M, EI-JKU, FHB, EEE, EG, ÖE, PINK, TUCN,
DEER, TN, ENTECH, SDEF, EGC, KB, AF, Sustain,
NEOGRID, MPODOSAKEIO, DHCP, HEDNO, BER, MEISA,
ITG, NTTDATA, TUAS, NEOY, HES-SO

Website https://www.evelixia-project.eu/

Cordis https://cordis.europa.eu/project/id/101123238

D3.1 - Platform External Communication and 3
Common Information Management

Disclaimer

Funded by the European Union. The content of this deliverable reflects the authors’
views. Views and opinions expressed are, however, those of the author(s) only and
do not necessarily reflect those of the European Union or the European Climate,
Infrastructure and Environment Executive Agency (CINEA). Neither the European
Union nor the granting authority can be held responsible for them.

Copyright Message

This report, if not confidential, is licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). A copy is available here:
https://creativecommons.org/licenses/by/4.0/.
You are free to share (copy and redistribute the material in any medium or format)
and adapt (remix, transform, and build upon the material for any purpose, even
commercially) under the following terms: (i) attribution (you must give appropriate
credit, provide a link to the license, and indicate if changes were made; you may do
so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use); (ii) no additional restrictions (you may not apply legal
terms or technological measures that legally restrict others from doing anything
the license permits).

ACKNOWLEDGMENT

This project has received funding from the European Union’s
Horizon Europe Framework Programme for Research and
Innovation under grant agreement no

101123238. Disclaimer: The European Commission is not
responsible for any use made of the information contained herein. The
content does not necessarily reflect the opinion of the European
Commission.

D3.1 - Platform External Communication and 4
Common Information Management

Deliverable D3.1

Platform external communication and
common information management

Deliverable
number

D3.1

Deliverable name
EVELIXIA platform external communication and
common information management

Lead beneficiary CIRCE

Description

This deliverable is directly linked to the activities
foreseen in Task 3.1 and Task 3.2, consolidating all
foreseen technical developments on EVELIXIA’s
platform interoperability, appropriate connectors,
common information modelling, and knowledge
repository. This report is considered as the first version of
D3.2.

WP WP3

Related task(s) T3.1, T3.2

Type Report

Dissemination level Public

Delivery date 14.04.2025

Main authors Alberto Moreno (CIRCE)

Contributors

D3.1 - Platform External Communication and 5
Common Information Management

Document history

Version Date Changes Author

V1 – first draft shared with
contributing partners
and reviewers

28.01.2025 CIRCE

1st review 01.02.2025 HEDNO

V1 – consolidated version 20.02.2025 CIRCE

2nd review 01.02.2025 NEOGRID

V2 – consolidated version 20.03.2025 CIRCE

Final version 31.03.2025 CIRCE

Final deliverable
submission

14.04.2025 CERTH

D3.1 - Platform External Communication and 6
Common Information Management

ABBREVIATIONS

Abbreviation Name

API (Application Programming Interface): A set of protocols and tools for
building software and applications, allowing different systems to
communicate with each other.

CIM (Common Information Model): A standard for representing data and
information in a consistent and interoperable manner, often using
ontologies like SAREF.

NLP (Natural Language Processing): A field of artificial intelligence that
focuses on the interaction between computers and humans through
natural language.

Pub/Sub (Publish/Subscribe): A messaging pattern where senders
(publishers) send messages to a topic, and receivers (subscribers)
receive messages from that topic.

SAREF (Smart Appliances REFerence ontology): An ontology developed to
enable interoperability between smart appliances and other devices.

SPARQL (Protocol and RDF Query Language): A query language used to
retrieve and manipulate data stored in Resource Description
Framework (RDF) format.

D3.1 - Platform External Communication and 7
Common Information Management

GLOSSARY OF TERMS

Abbreviation Name

Authentication The process of verifying the identity of a user or system.

Authorization The process of granting or denying access to resources based on
the authenticated identity.

Data Broker A middleware component that manages the distribution and
routing of data between different parts of the system, often using
pub/sub mechanisms.

Deployment
Pipeline

A series of automated processes that manage the deployment of
software from development to production environments.

Field Layer The layer in an architecture that includes devices and sensors
collecting data from the physical environment.

Knowledge
Graph:

A structured representation of data that enables semantic queries
and insights, often using technologies like SPARQL.

Northbound
Open API
Connector

A module that facilitates communication between the data
management layer and the application/services layer.

Ontology A formal representation of knowledge as a set of concepts and the
relationships between those concepts.

Security
Measures

Techniques and practices implemented to protect data and
systems from unauthorized access and threats.

Semantic Query A query that uses semantic technologies to retrieve data based on
the meaning and relationships of the data.

Service Broker A component that manages service requests and responses
between different parts of the system.

Southbound
Open API
Connector

A module that facilitates communication between the data
management layer and field layer devices.

D3.1 - Platform External Communication and 8
Common Information Management

TABLE OF CONTENTS
LIST OF FIGURES .. 8

EXECUTIVE SUMMARY ... 9

1 INTRODUCTION AND OBJECTIVES .. 10

1.1 Scope and Context ... 10

1.2 Interaction with other Tasks and Work Packages... 11

1.3 Structure of this deliverable ... 11

2 SOFTWARE DEVELOPMENT AND DEPLOYMENT STRATEGY 12

2.1 Data Management Layer deployment approach .. 13

2.2 Tools and technologies used ... 14

2.3 Environment setup ... 15

2.4 Requirements considerations ... 16

3 SOFTWARE COMPONENTS DEVELOPMENT .. 18

3.1 Southbound Open API Connector ... 18
3.1.1 Description and functionality .. 18
3.1.2 Development process.. 19
3.1.3 Deployment process ... 19
3.1.4 Dependencies .. 20

3.2 Northbound Open API Connector ... 20
3.2.1 Description and functionality .. 20
3.2.2 Development process.. 20
3.2.3 Deployment process ... 21
3.2.4 Dependencies .. 21

3.3 Data broker .. 21
3.3.1 Description and functionality .. 21
3.3.2 Development process.. 22
3.3.3 Deployment process ... 22
3.3.4 Dependencies .. 23

3.4 Knowledge graph and Common Information Model (CIM) ... 23
3.4.1 Description and functionality .. 23
3.4.2 Development process.. 24
3.4.3 Deployment process ... 24
3.4.4 Dependencies .. 25

4 CONCLUSIONS .. 26

5 REFERENCES ... 27

LIST OF FIGURES

Figure 1: – Overall EVELIXIA Conceptual Architecture .. 12
Figure 2: Data Management High Level Architecture.. 14

D3.1 - Platform External Communication and 9
Common Information Management

EXECUTIVE SUMMARY

This document provides a comprehensive overview of the development

processes for the data management layer, detailing the design,

implementation, and deployment of its key software components, to

efficiently collect, process, and expose data from pilot sites.

The development process involves configuring communication protocols to

ensure seamless data transmission between data management layer (WP3)

and the applications/services layer (WP4). Additionally, the process involves

designing workflows for periodical data ingestion and routing, ensuring

data quality and consistency through comprehensive validation and error

handling mechanisms and secured data access and transmission.

Furthermore, the data management layer leverages advanced semantic

querying and data integration capabilities to manage pilot sites data in a

structured and meaningful way, facilitating the extraction of insights and

relationships and so adding context and knowledge to information.

By following these development processes, the Data management layer is

constructed to meet the requirements of collecting, processing, and

exposing pilot sites data, ensuring data integrity, security, and accessibility

through the EVELIXIA’s architecture.

This document outlines the communication and data management

processes of EVELIXIA that will support the delivery of the platform’s first

integrated version by M25, within the scope of Task 5.1. A final, updated

version will be delivered as D3.2 in M33.

D3.1 - Platform External Communication and 10
Common Information Management

1 INTRODUCTION AND OBJECTIVES

This chapter defines the objectives, scope, context, and structure of the

deliverable. It also outlines its relationship with other tasks within the

project. To this end D3.1 delivers the EVELIXIA platform external

communication and common information management, according to the

EVELIXIA’s interoperability and BRIDGE alignments (T3.1) and the Common

Information modelling and context knowledge repository (T3.2).

1.1 Scope and Context

This deliverable is directly linked to the activities foreseen in Task 3.1 and Task

3.2, consolidating all foreseen technical developments on EVELIXIA’s

platform interoperability, appropriate connectors, common information

modelling, and knowledge repository.

The scope of this document, titled "EVELIXIA platform External

Communication and Common Information Management," encompasses

the technical developments and deployments within the data management

layer of the EVELIXIA platform. This layer serves as a middleware, facilitating

seamless data integration and communication between the field layer and

the application/services layer.

The document aims to provide a comprehensive overview of the

components developed to enhance EVELIXIA platform interoperability,

including connectors, data routing mechanisms, semantic querying

capabilities, and standardized information modelling.

The development concentrates on the design, implementation, and

individual functionalities of each component within the pilot sites data

management system:

D3.1 - Platform External Communication and 11
Common Information Management

 Detailed descriptions of each component (Southbound Open API

Connector, Data Broker, Northbound Open API Connector,

Knowledge Graph).

 Development processes, including requirement analysis, design,

implementation, and testing for each component.

 Dependencies and deployment strategies specific to each

component.

1.2 Interaction with other Tasks and Work Packages

Deliverable D3.1 concisely presents the technical developments and

deployments within the data management layer, based on input from:

 WP1 (D1.3 & D1.7)

The software components developed in tasks T3.1 and T3.2 are designed to

interact closely with and depend on the developments from:

 WP2 (T2.4)

 WP3 (T3.3, T3.4&T3.5)

 WP4 (T4.6)

 WP5 (T5.2)

1.3 Structure of this deliverable

The deliverable is constituted by the following chapters which are

interrelated and provide an overall analysis of the EVELIXIA platform

architecture.

 Chapter Introduction and Objectives

 Chapter Software Deployment Strategy: Strategy, environment setup, and
deployment pipeline.

 Chapter Software Components Development: Details on key components
like the Southbound and Northbound Open API Connectors, Data Broker,
Knowledge Graph, and Common Information Model (CIM).

 Chapter Conclusion: Summary and future enhancements.

 Chapter References

D3.1 - Platform External Communication and 12
Common Information Management

2 SOFTWARE DEVELOPMENT AND DEPLOYMENT
STRATEGY

The development strategy for the innovative project on smart grid efficient

interactive buildings involves a multi-faceted approach to ensure seamless

integration and efficient operation of various software components.

The data broker, implemented using Apache Airflow, orchestrates and

manages data workflows, ensuring timely and reliable data processing.

The southbound open API connector integrates data from pilot sites,

providing a unified data stream for further processing. The northbound

open API connector interacts with the service broker's API, facilitating

communication and data exchange between different system components.

The knowledge graph, utilizing a GraphDB to store the SAREF ontology as a

Common Information Model, enables advanced semantic queries. These

queries are defined based on business language questions regarding the

common operations of the pilot sites, ensuring that the system can provide

meaningful insights and support decision-making processes.

Figure 1: – Overall EVELIXIA Conceptual Architecture

D3.1 - Platform External Communication and 13
Common Information Management

2.1 Data Management Layer deployment approach

The data management layer serves as a critical middleware component

within the EVELIXIA platform, facilitating seamless data integration and

communication between the field layer and the application/services layer.

This layer is designed to handle diverse data sources, ensuring robust data

acquisition, processing, and distribution. Key components include the

Southbound and Northbound Open API Connectors, which enable

interaction with field devices and application/services layers, respectively;

the Data Broker, which manages data routing and pub/sub mechanisms;

the Knowledge Graph, which provides semantic querying capabilities for

deeper insights; and the Common Information Model (CIM), which

standardizes data exchange using the SAREF ontology.

The purpose of T3.1 developments is to have a standard pipeline to read data

from certain PS (Greek, Austrian, Danish) and send RAW data to T3.3

modules and store healed data.

The purpose of T3.2 developments is to have a small list of (about five)

general business queries which describe some assets data/metadata and

their relationships (context) to be translated into semantic queries.

Together, these components make up the data management layer, also

known as middleware layer, enhancing the interoperability, security, and

scalability of the EVELIXIA platform.

The development process for each component involves requirement

analysis, design, implementation, and testing. The deployment process

includes containerization, deployment to cloud or on-premises servers, and

ongoing monitoring and maintenance. Dependencies for each component

are carefully managed to ensure seamless integration and operation.

D3.1 - Platform External Communication and 14
Common Information Management

Figure 2: Data Management High Level Architecture

2.2 Tools and technologies used

1. Programming Languages:
o Python for developing RESTful APIs (southbound) and data

gathering scripts (in Apache workflow).
o Node.js for developing Southbound Open API connector.

2. Frameworks:
o Apache Airflow for periodical data gathering and workflow

orchestration.

D3.1 - Platform External Communication and 15
Common Information Management

3. Databases:
o PostgreSQL for airflow pilot site data and metadata as

intermediate data storage.
o GraphDB as the knowledge graph database managing the

SAREF ontology to execute SPARQL queries
4. Containerization and Orchestration:

o Docker for containerizing applications (southbound API and
PostgreSQL)

5. Visualization
o Grafana to visualize data gathered from pilot sites

6. Resources
o Every software component has been deployed on premises in a

physical server with 32 cores and 64GB of RAM.

2.3 Environment setup

For T3.1 developments:
Two databases: one for raw data and another for healed data.

o Raw data (PostgreSQL) will contain tables that will be exposed
in a REST API to be used by T3.3 modules (GET).

o Healed data for storing (POST) T3.3 curated info

Temporary endpoints were created and deactivated as soon as real
API PS became available (T2.4)

In this first iteration for M18, postman collections have been used to
test the endpoints.

For T3.2 developments:

GraphDB storage for the CIM (SAREF ontology) which supports
SPARQL queries through HTTP Requests.

D3.1 - Platform External Communication and 16
Common Information Management

2.4 Requirements considerations

Regarding pilot sites data:

 Temporary endpoints have been created for testing purposes and will
be deactivated as soon as pilot site APIs are developed (T2.4)

 No RAW data will be sent to the service broker and so no specific Kafka
topic will be mounted for this purpose.

 RAW data received by the pilot sites is stored as it is captured (JSON
format)

 Each pilot site can have its own data model; the SAREF compliant
conversion/wrap up will be implemented within the data broker

 The potential ‘delay’ in receiving healed data is not considered as a
problem because data will be request during all day.

 A POSTMAN API collection with all the available APIs from pilot sites
data (Greek, Austrian, Denmark) has been prepared and periodic data
gathering tasks have been scheduled through the usage of Apache
Airflow EVELIXIA platform.

 There will be an endpoint for RAW data (also needed for IS21 T3.3),
which takes place before the semantic engine (T3.2), which will
interact with WP4 developments.

 There will be two separated streams: one for reading RAW data and
the other one for writing HEALED data.

Regarding data broker:

 Will be the task scheduler gathering data periodically from pilot sites
API

 Will act as publisher (PUB) for the other components, which will act as
subscribers (SUB).

 There will not be a bidirectional communication between data and
service brokers (as no MQTT channel will be created in this first
prototype)

 Service Broker (WP4) will behave as publisher (PUB) for the Data
Broker, which will act as subscriber (SUB).

 Authentication/Authorization mechanism have been established
between data and service broker, designed in T4.5

D3.1 - Platform External Communication and 17
Common Information Management

Regarding semantic queries:
 Common Information Model (CIM) is the already defined SAREF

ontology

 The preliminary semantic queries defined in the first prototype (M18 -
march ’25) will be exposed through a dedicated POSTMAN collection.

Other considerations:
 Blockchain infrastructure will only oversee the energy transactions

and not of the security and access control, despite serving as an extra
security layer

 Authentication and Authorization:

o Implement OAuth 2.0 for securing API endpoints.

 Data Encryption:

o Data from pilot sites is stored unencrypted
o Encrypt data in transit using TLS/SSL for all communications

between components.

 Compliance and Auditing:

o Ensure compliance with relevant regulations and standards
(GDPR, ISO 27001).

D3.1 - Platform External Communication and 18
Common Information Management

3 SOFTWARE COMPONENTS DEVELOPMENT

This section provides a detailed overview of the key components developed

within the data management layer. Each component plays a crucial role in

facilitating seamless data integration and communication across the

EVELIXIA platform.

3.1 Southbound Open API Connector

3.1.1 Description and functionality

Description

The Southbound Open API Connector is a critical component designed to

interface with IoT field devices (sensors) to collect raw data and make it

available for further processing. This connector acts as a bridge between the

physical devices and the data management layer, ensuring that sensor data

is periodically captured and made accessible through a standardized API.

Functionality:

1. Data Collection:
o Periodically fetches raw data from Pilot sites data using HTTPS

as the communication protocol
o Supports multiple sensor types and data formats to ensure

comprehensive data collection.

2. Data Aggregation:
o Aggregates data from multiple sensors to provide a unified view.
o Ensures data consistency and accuracy during the aggregation

process.

3. API Exposure:
o Provides RESTful API endpoints to expose the collected raw

data.
o Supports JSON data format to ensure interoperability and

compatibility with different systems and applications.

4. Scheduling and Automation:
o Implements task scheduling to automate periodic data

collection using tools like Celery.
o Ensures timely and reliable data capture from sensors.

D3.1 - Platform External Communication and 19
Common Information Management

o Provides metrics for monitoring sensor data access and usage
patterns.

3.1.2 Development process

1. Requirement Analysis:
o Analyze the pilot sites infrastructure (D1.3 “Pilot Site Surveys

results, Use Cases definition and market needs analysis”) to
define the data sources, communication protocols, and data
formats of the pilot sites.

o Determine the frequency of data collection and the aggregation
logic.

o Analyze the commercial platforms already in use for particular
pilot sites

o Prioritize according to matureness. Finally selected Austrian,
Danish and Greek for the first protype (M18).

2. API Design:
o Design the API endpoints for data retrieval and aggregation, as

soon as new assets data is available in the pilot sites

3. Implementation:
o Set up the development environment with the chosen

programming language (Python and Node.js).
o Develop the API endpoints to fetch and aggregate data from IoT

sensors.
o Implement periodic data collection using a task scheduler

(Apache airflow).

4. Testing:
o Perform integration testing to verify that data is correctly

aggregated and served.
o Validate the performance and reliability of the data collection

process.

3.1.3 Deployment process

1. Containerization:
o Create a Dockerfile to containerize the application.
o Build the Docker image to ensure consistency across different

environments.

2. Deployment:
o Deploy the Docker container to a on-premises server.

D3.1 - Platform External Communication and 20
Common Information Management

3.1.4 Dependencies

 Programming Language: Python, Node.js
 Task Scheduler: Apache Airflow
 Containerization: Docker
 Cloud Services: on premises
 Database: PostgreSQL

3.2 Northbound Open API Connector

3.2.1 Description and functionality

Description
The Northbound Open API Connector is a crucial component designed to
expose healed data to a service broker. This connector acts as an interface
between the data management layer and the service broker, ensuring that
the data provided is clean, validated, and ready for consumption by various
services and applications.

Functionality:

1. Data Retrieval:
o Fetches raw and transformed data from the Data Broker.
o Applies data transformation and healing rules to clean and

validate the data.

2. Data Exposure:
o Provides RESTful API endpoints to expose the healed data to the

service broker (WP4) through its API (T4.6).
o Supports JSON data format to ensure interoperability and

compatibility with the service broker.

3. Data Security:
o Bypasses the authentication and authorization mechanisms

(define in T4.5) to secure data access.
o Ensures data integrity and confidentiality during transmission.

3.2.2 Development process

1. Requirement Analysis:
o Define the data requirements and endpoints for the service

broker.
o Determine the data transformation and healing rules.

2. API Design:

o Design the API endpoints to expose healed data.

D3.1 - Platform External Communication and 21
Common Information Management

3. Implementation:
o Set up the development environment with the chosen

programming language (Python with Node.js).
o Develop the API endpoints to fetch, transform, and expose data.

4. Testing:

o Perform integration testing to verify that data is correctly
transformed and exposed.

o Validate the performance and security of the API.

3.2.3 Deployment process

1. Containerization:
o Create a Dockerfile to containerize the application.
o Build the Docker image to ensure consistency across different

environments.

2. Deployment:
o Deploy the Docker container to an on-premises server.

3.2.4 Dependencies

 Programming Language: Python, Node.js
 Task Scheduler: Apache Airflow
 Containerization: Docker
 Cloud Services: on premises
 Database: PostgreSQL

3.3 Data broker

3.3.1 Description and functionality

Description
Apache Airflow serves as the Data Broker in this architecture, orchestrating
the periodic capture of data from Pilot sites data and managing the data
flow within the system. It ensures that data is ingested, transformed, and
routed efficiently to the Northbound Open API Connector for further
processing and exposure.

Functionality:

1. Workflow Orchestration:
o Handles task dependencies and ensures reliable execution of

data pipelines.

D3.1 - Platform External Communication and 22
Common Information Management

2. Data Ingestion:
o Periodically fetches raw data from the Southbound Open API

Connector.

3. Data Transformation:
o Transformations on RAW data, including data healing and

imputation techniques are performed in T3.3 modules, to
ensure data quality.

4. Data Routing:
o Routes transformed data to the Northbound Open API

Connector.

3.3.2 Development process

1. Requirement Analysis:
o Define the data sources, transformation rules, and routing logic.
o Determine the scheduling frequency and workflow

dependencies.
2. Implementation:

o Set up the development environment with Apache Airflow.
o Develop Python scripts to define data gathering tasks.
o Implement data ingestion, transformation, and routing logic

within the tasks.
3. Testing:

o Perform integration testing to ensure workflows execute
correctly.

o Validate data quality and transformation results.

3.3.3 Deployment process

1. Containerization:
o Create a Dockerfile to containerize the Apache Airflow setup.
o Build the Docker image for the Airflow environment.

2. Deployment:
o Deploy the Docker container to a cloud service provider (e.g.,

AWS, Azure) or on-premises server.
o Set up a container orchestration tool (e.g., Kubernetes) if

needed.
o Configure Airflow to use a backend database and message

broker (PostgreSQL).

D3.1 - Platform External Communication and 23
Common Information Management

3.3.4 Dependencies

 Programming Language: Python, Node.js
 Task Scheduler: Apache Airflow
 Containerization: Docker
 Cloud Services: on premises
 Database: PostgreSQL

3.4 Knowledge graph and Common Information Model (CIM)

3.4.1 Description and functionality

Description
The Knowledge Graph and Common Information Model (CIM) component
leverages GraphDB to store and manage the SAREF ontology, providing a
semantic layer for Pilot Sites data. This component enables advanced
querying and data integration, allowing users to derive insights and
relationships from the data using SPARQL queries.

Functionality:

1. Ontology Management:
o Loads and manages the SAREF ontology within GraphDB.
o Ensures the ontology is up-to-date and accurately represents

the data model.

2. Data Ingestion:
o Converts raw sensor data into RDF format compatible with the

SAREF ontology.
o Inserts RDF data into GraphDB using HTTPS POST requests.

3. Semantic Querying:

o Provides RESTful API endpoints to execute SPARQL queries and
return results.

o Supports complex queries to derive insights and relationships
from the data.

4. Data Integration:
o Integrates data from multiple sources to create a unified

knowledge graph.
o Ensures data consistency and integrity within the knowledge

graph.

D3.1 - Platform External Communication and 24
Common Information Management

3.4.2 Development process

1. Requirement Analysis:
o Analyse that SAREF ontology is suitable to be used as an

ontology, meeting the objectives of the project.
o Determine the types of queries and data retrieval requirements.
o Select the SAREF ontology as the Common Information Model

(CIM).
2. Ontology Setup:

o Download and configure the SAREF ontology.
o Load the ontology into GraphDB using the GraphDB

Workbench.
3. Data Ingestion:

o Develop scripts to convert raw sensor data into RDF format.
o Implement HTTPS POST requests to insert RDF data into

GraphDB.
4. SPARQL Query API Development:

o Develop an API to handle SPARQL queries and return results.
o Implement endpoints to execute SPARQL queries via HTTPS

requests.
5. Testing:

o Perform integration testing to ensure data is correctly stored
and retrieved.

o Validate the performance and accuracy of SPARQL queries.

3.4.3 Deployment process

1. GraphDB Setup:
o Install and configure GraphDB on a server or cloud instance.
o Create and configure the repository for the ontology.

2. Containerization:
o Create a Dockerfile for the SPARQL Query API.
o Build the Docker image to ensure consistency across different

environments.
3. Deployment:

o Deploy GraphDB and the SPARQL Query API container to a
cloud service provider (e.g., AWS, Azure) or on-premises server.

o Set up a container orchestration tool (e.g., Kubernetes) if needed
to manage the deployment.

D3.1 - Platform External Communication and 25
Common Information Management

3.4.4 Dependencies

 Ontology: SAREF
 Graph Database: GraphDB
 Programming Language: Python
 Task Scheduler: Apache Airflow
 Containerization: Docker
 Cloud Services: on premises

D3.1 - Platform External Communication and 26
Common Information Management

4 CONCLUSIONS

The development of the pilot sites data management system integrates

several critical components, each with distinct roles and functionalities, to

ensure efficient data collection, processing, and exposure. Insights from the

key components and their roles in this middleware layer are listed below:

Southbound Open API Connector:

 Collects raw data from Pilot sites data and exposes it through

standardized API endpoints.

 Ensures timely and reliable data capture with automated scheduling

and monitoring.

Data Broker (Apache Airflow):

 Orchestrates workflows for periodic data ingestion, transformation,

and routing.

 Manages the data flow within the system, ensuring data quality and

consistency.

Northbound Open API Connector:

 Exposes healed data to a service broker, ensuring the data is clean and

validated.

 Implements robust security measures to protect data integrity and

confidentiality.

Knowledge Graph and Common Information Model (CIM):

 Utilizes GraphDB to store and manage the SAREF ontology, enabling

semantic querying.

 Provides advanced data integration and querying capabilities to

derive insights from pilot sites data.

This way, the system leverages advanced technologies and methodologies

to provide a robust solution for managing pilot sites data.

The present document analyzes EVELIXIA’s communication and data

management processes, which will be deployed for the delivery of the first

version of the integrated platform by M25, as part of Task 5.1. The final version

of this document will be submitted in M33 (D3.2).

D3.1 - Platform External Communication and 27
Common Information Management

5 REFERENCES

[1] "Gaia-X," [Online]. Available: https://gaia-x.eu/.
[2] "Node JS," [Online]. Available: https://nodejs.org/en/.
[3] "IDS RAM 4.0," International Data Spaces Association, [Online].

Available: https://docs.internationaldataspaces.org/knowledge-
base/ids-ram-4.0.

[4] A. R. A. E. A. E. Boris Otto, "GAIA-X and IDS," Berlin, Germany, January
2021.

[5] "docker," [Online]. Available: https://www.docker.com/.
[6] B. Frost, " "Atomic Design,," 20 October 2021. [Online]. Available:

https://bradfrost.com/blog/post/atomic-web-design/ . [Accessed 24
May 2024].

